BROWDER'S CONVERGENCE FOR ONE-PARAMETER NONEXPANSIVE SEMIGROUPS

SHIGEKI AKIYAMA AND TOMONARI SUZUKI

Abstract

We give the sufficient and necessary condition of Browder's convergence theorem for one-parameter nonexpansive semigroups which was proved in [T. Suzuki, Browder's type convergence theorems for one-parameter semigroups of nonexpansive mappings in Banach spaces, Israel J. Math., 157 (2007), 239-257]. We also discuss the perfect kernels of topological spaces.

1. Introduction

Let C be a closed convex subset of a Banach space E. A family of mappings $\{T(t): t \geq$ $0\}$ is called a one-parameter strongly continuous semigroup of nonexpansive mappings (one-parameter nonexpansive semigroup, for short) on C if the following are satisfied:
(i) For each $t \geq 0, T(t)$ is a nonexpansive mapping on C, that is,

$$
\|T(t) x-T(t) y\| \leq\|x-y\|
$$

holds for all $x, y \in C$.
(ii) $T(s+t)=T(s) \circ T(t)$ for all $s, t \geq 0$.
(iii) For each $x \in C$, the mapping $t \mapsto T(t) x$ from $[0, \infty)$ into C is strongly continuous.
There are six papers concerning the existence of common fixed points of $\{T(t): t \geq 0\}$; see $[1,2,4,5,9,11]$. Recently, Suzuki [11] proved that $\bigcap_{t \geq 0} F(T(t))$ is nonempty provided every nonexpansive mapping on C has a fixed point, where $F(T(t))$ is the set of all fixed points of $T(t)$. He also proved a semigroup version of Browder's [3] convergence theorem in [10, 12].
Theorem 1 ([12]). Let τ be a nonnegative real number. Let $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$ be real sequences satisfying
(i) $0<\alpha_{n}<1$ and $0<t_{n}$ for $n \in \mathbb{N}$;
(ii) $\lim _{n} t_{n}=\tau$;
(iii) $t_{n} \neq \tau$ for $n \in \mathbb{N}$ and $\lim _{n} \alpha_{n} /\left(t_{n}-\tau\right)=0$.

Let C be a weakly compact convex subset of a Banach space E. Assume that either of the following holds:

- E is uniformly convex with uniformly Gâteaux differentiable norm.
- E is uniformly smooth.
- E is a smooth Banach space with the Opial property and the duality mapping J of E is weakly sequentially continuous at zero.

[^0]Let $\{T(t): t \geq 0\}$ be a one-parameter nonexpansive semigroup on C. Fix $u \in C$ and define a sequence $\left\{u_{n}\right\}$ in C by

$$
\begin{equation*}
u_{n}=\left(1-\alpha_{n}\right) T\left(t_{n}\right) u_{n}+\alpha_{n} u \tag{1}
\end{equation*}
$$

for $n \in \mathbb{N}$. Then $\left\{u_{n}\right\}$ converges strongly to $P u$, where P is the unique sunny nonexpansive retraction from C onto $\bigcap_{t \geq 0} F(T(t))$.

See $[6,7,15]$ for the notions such as 'Opial property', etc.
In this paper, we give the sufficient and necessary condition on $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$.

2. Sufficiency

Throughout this paper we denote by \mathbb{N} the set of all positive integers and by \mathbb{R} the set of all real numbers.

In this section, we generalize Theorem 1 .
Theorem 2. Let $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$ be real sequences satisfying
(i) $0<\alpha_{n}<1$ and $0 \leq t_{n}$ for $n \in \mathbb{N}$;
(ii) $\left\{t_{n}\right\}$ is bounded;
(iii) $\lim _{n} \alpha_{n} /\left(t_{n}-\tau\right)=0$ for all $\tau \in[0, \infty)$, where $1 / 0=\infty$.

Let $E, C,\{T(t): t \geq 0\}, P, u$ and $\left\{u_{n}\right\}$ be as in Theorem 1. Then $\left\{u_{n}\right\}$ converges strongly to Pu .

Proof. Let $\{f(n)\}$ be an arbitrary subsequence of $\{n\}$. Since $\left\{t_{n}\right\}$ is bounded, so is $\left\{t_{f(n)}\right\}$. Hence there exists a cluster point $\tau \in[0, \infty)$ of $\left\{t_{f(n)}\right\}$. From (iii), there exists $\nu \in \mathbb{N}$ such that $t_{f(n)} \neq \tau$ and $t_{f(n)} \neq 0$ for $n \in \mathbb{N}$ with $n \geq \nu$. We choose a subsequence $\{g(n)\}$ of $\{n\}$ such that $g(1) \geq \nu$ and $\left\{t_{f \circ g(n)}\right\}$ converges to τ. From (iii) again, we have

$$
\lim _{n \rightarrow \infty} \frac{\alpha_{f \circ g(n)}}{t_{f \circ g(n)}-\tau}=0
$$

By Theorem 1, $\left\{u_{f \circ g(n)}\right\}$ converges strongly to $P u$. Since $\{f(n)\}$ is arbitrary, we obtain that $\left\{u_{n}\right\}$ converges strongly to Pu .

As a direct consequence of Theorem 2, we obtain the following.
Corollary 1. Let $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$ be real sequences satisfying Conditions (i)-(iii) of Theorem 2. Let $\{T(t): t \geq 0\}$ be a one-parameter nonexpansive semigroup on a bounded closed convex subset C of a Hilbert space E. Let P be the metric projection from C onto $\bigcap_{t \geq 0} F(T(t))$. Fix $u \in C$ and define a sequence $\left\{u_{n}\right\}$ in C by (1). Then $\left\{u_{n}\right\}$ converges strongly to Pu.

We note that we need Condition (i) in order to define $\left\{u_{n}\right\}$. In the remainder of this paper, we discuss Conditions (ii) and (iii).

3. Necessity

In this section, we shall show that Conditions (ii) and (iii) of Theorem 2 are best possible, in a sense that we cannot relax these conditions on $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$ any more.

For real numbers s and t with $t>0$, we define ' $m o d$ ' by

$$
s \bmod t=s-[s / t] t
$$

where $[s / t]$ is the maximum integer not exceeding s / t.

Lemma 1. Let $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$ be real sequences satisfying Condition (i) of Theorem 2. Assume $\lim \sup _{n} t_{n}=\infty$. Then for every nonnegative real number v, there exists a positive real number τ such that

$$
\limsup _{n \rightarrow \infty} \frac{\alpha_{n}}{\left(t_{n} \bmod \tau\right)-v}=\infty
$$

Proof. We shall define two real sequences $\left\{\varepsilon_{n}\right\}$ and $\left\{\tau_{n}\right\}$ and a subsequence $\{f(n)\}$ of $\{n\}$ satisfying the following.
(i) $0<\varepsilon_{n}<1$ and $v+1+\varepsilon_{n}<\tau_{n}$.
(ii) $\alpha_{f(n)} /\left(\left(t_{f(n)} \bmod \tau\right)-v\right) \geq n$ for $\tau \in\left[\tau_{n}-\varepsilon_{n}, \tau_{n}\right]$.
(iii) $\left[\tau_{n}-\varepsilon_{n}, \tau_{n}\right] \supset\left[\tau_{n+1}-\varepsilon_{n+1}, \tau_{n+1}\right]$.

We denote $t_{f(n)}$ by s_{n} and $\alpha_{f(n)}$ by β_{n} for $n \in \mathbb{N}$. We choose $f(1)$ satisfying $s_{1}>2 v+2$. We put

$$
\varepsilon_{1}:=\beta_{1} / 2 \in(0,1) \quad \text { and } \quad \tau_{1}:=s_{1}-v>v+2>v+1+\varepsilon_{1} .
$$

If $\tau \in\left[\tau_{1}-\varepsilon_{1}, \tau_{1}\right]$, then since

$$
1 \leq \frac{s_{1}}{s_{1}-v}=\frac{s_{1}}{\tau_{1}} \leq \frac{s_{1}}{\tau} \leq \frac{s_{1}}{\tau_{1}-\varepsilon_{1}}<\frac{s_{1}}{s_{1} / 2}=2
$$

we have

$$
0 \leq\left(s_{1} \bmod \tau\right)-v=s_{1}-\tau-v=\tau_{1}-\tau \leq \varepsilon_{1} \leq \beta_{1}
$$

which implies (ii). We assume that $\varepsilon_{n}, \tau_{n}$ and $f(n)$ are defined for some $n \in \mathbb{N}$. We choose $f(n+1)$ satisfying $f(n+1)>f(n)$ and $s_{n+1} \geq 2 \tau_{n}\left(\tau_{n}-\varepsilon_{n}\right) / \varepsilon_{n}$. Then we have

$$
s_{n+1}>\tau_{n} \quad \text { and } \quad \frac{s_{n+1}}{\tau_{n}-\varepsilon_{n}} \geq \frac{s_{n+1}}{\tau_{n}}+2
$$

Hence there exist real numbers p and q such that

$$
\tau_{n}-\varepsilon_{n} \leq p<q \leq \tau_{n} \quad \text { and } \quad \frac{s_{n+1}}{p}=\frac{s_{n+1}}{q}+1 \in \mathbb{N}
$$

We put

$$
\tau_{n+1}=\frac{\left(s_{n+1}-v\right) q}{s_{n+1}} \quad \text { and } \quad \varepsilon_{n+1}=\frac{\beta_{n+1} q}{(n+1) s_{n+1}}
$$

Then it is obvious that $\tau_{n+1} \leq q$. Since

$$
p-v-\beta_{n+1} /(n+1) \geq p-v-1 \geq \tau_{n}-\varepsilon_{n}-v-1>0
$$

We have

$$
\begin{aligned}
& \tau_{n+1}-\varepsilon_{n+1}=q \frac{s_{n+1}-v-\beta_{n+1} /(n+1)}{s_{n+1}}=\frac{s_{n+1} p}{s_{n+1}-p} \frac{s_{n+1}-v-\beta_{n+1} /(n+1)}{s_{n+1}} \\
& =p \frac{s_{n+1}-v-\beta_{n+1} /(n+1)}{s_{n+1}-p}>p
\end{aligned}
$$

Therefore

$$
\tau_{n}-\varepsilon_{n} \leq p<\tau_{n+1}-\varepsilon_{n+1}<\tau_{n+1} \leq q \leq \tau_{n}
$$

So we note

$$
\left(s_{n+1} \bmod \tau\right)-v=s_{n+1}-\tau s_{n+1} / q-v
$$

for $\tau \in\left[\tau_{n+1}-\varepsilon_{n+1}, \tau_{n+1}\right]$. Since

$$
\left(s_{n+1} \bmod \tau_{n+1}\right)-v=0 \quad \text { and } \quad\left(s_{n+1} \bmod \left(\tau_{n+1}-\varepsilon_{n+1}\right)\right)-v=\beta_{n+1} /(n+1)
$$

we have

$$
0 \leq\left(s_{n+1} \bmod \tau\right)-v \leq \beta_{n+1} /(n+1)
$$

for $\tau \in\left[\tau_{n+1}-\varepsilon_{n+1}, \tau_{n+1}\right]$. Therefore we have defined $\left\{\varepsilon_{n}\right\},\left\{\tau_{n}\right\}$ and $\{f(n)\}$ which satisfy (i)-(iii). Cantor's intersection theorem yields that there exists $\tau \in \mathbb{R}$ such that $\tau \in \bigcap_{n=1}^{\infty}\left[\tau_{n}-\varepsilon_{n}, \tau_{n}\right]$. By (ii), we have

$$
\limsup _{n \rightarrow \infty} \frac{\alpha_{n}}{\left(t_{n} \bmod \tau\right)-v} \geq \limsup _{n \rightarrow \infty} \frac{\beta_{n}}{\left(s_{n} \bmod \tau\right)-v} \geq \lim _{n \rightarrow \infty} n=\infty
$$

This completes the proof.
Lemma 2. Let $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$ be real sequences with Condition (i) of Theorem 2. Assume

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{\left|t_{n}-\tau\right|}>0 \quad \text { and } \quad \lim _{n \rightarrow \infty} t_{n}=\tau \tag{2}
\end{equation*}
$$

for some $\tau \in(0, \infty)$. Then there exists a subsequence $\{f(n)\}$ of $\{n\}$ such that either

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\alpha_{f(n)}}{t_{f(n)} \bmod \tau}>0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left(t_{f(n)} \bmod \tau\right)=0 \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\alpha_{f(n)}}{\left(t_{f(n)} \bmod \tau\right)-\tau}<0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left(t_{f(n)} \bmod \tau\right)=\tau \tag{4}
\end{equation*}
$$

holds.
Proof. If there exists a subsequence $\{f(n)\}$ of $\{n\}$ such that $t_{f(n)} \geq \tau$ for all $n \in \mathbb{N}$, then

$$
t_{f(n)} \bmod \tau=t_{f(n)}-\tau=\left|t_{f(n)}-\tau\right|
$$

for sufficiently large $n \in \mathbb{N}$. Thus (3) holds. If there exists a subsequence $\{f(n)\}$ of $\{n\}$ such that $t_{f(n)}<\tau$ for all $n \in \mathbb{N}$, then

$$
\left(t_{f(n)} \bmod \tau\right)-\tau=t_{f(n)}-\tau=-\left|t_{f(n)}-\tau\right|
$$

for all $n \in \mathbb{N}$. Thus (4) holds.
Lemma 3. Let $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$ be real sequences with Condition (i) of Theorem 2. Assume

$$
\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{t_{n}}>0 \quad \text { and } \quad \lim _{n \rightarrow \infty} t_{n}=0
$$

Then (3) holds for every positive real number τ and every subsequence $\{f(n)\}$ of $\{n\}$.
Proof. Obvious.
Lemma 4. Let $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$ be real sequences with Condition (i) of Theorem 2. Assume that the conjunction of Condition (ii) and Condition (iii) of Theorem 2 does not hold. Then there exist a positive real number τ and a subsequence $\{f(n)\}$ of $\{n\}$ such that either (3) or (4) holds.

Proof. We consider the following four cases:

- $\lim \sup _{n} t_{n}=\infty$
- $\lim \sup _{n} t_{n}<\infty$ and $\lim \sup _{n} \alpha_{n}>0$
- $\lim \sup _{n} t_{n}<\infty, \lim _{n} \alpha_{n}=0$ and $\lim \sup _{n} \alpha_{n} /\left|t_{n}-\tau\right|>0$ for some $\tau \in(0, \infty)$
- $\lim \sup _{n} t_{n}<\infty, \lim _{n} \alpha_{n}=0$ and $\lim \sup _{n} \alpha_{n} / t_{n}>0$.

In the first case, using Lemma 1, there exist a positive real number τ and a subsequence $\{f(n)\}$ of $\{n\}$ such that

$$
\lim _{n \rightarrow \infty} \frac{\alpha_{f(n)}}{t_{f(n)} \bmod \tau}=\infty
$$

It is obvious that $\lim _{n}\left(t_{f(n)} \bmod \tau\right)=0$. Thus (3) holds. Next, we note that it is sufficient to show the existence of a subsequence $\{g(n)\}$ of $\{n\}$ such that we can apply either Lemma 2 or Lemma 3. In the second case, we can choose a subsequence $\{g(n)\}$ of $\{n\}$ such that $\lim _{n} \alpha_{g(n)}>0$ and $\left\{t_{g(n)}\right\}$ converges to some nonnegative real number τ. Then $\left\{\alpha_{g(n)}\right\}$ and $\left\{t_{g(n)}\right\}$ satisfy (2). So we can apply either Lemma 2 or Lemma 3. In the third case, we can choose a subsequence $\{g(n)\}$ of $\{n\}$ such that $\lim _{n} \alpha_{g(n)} /\left|t_{g(n)}-\tau\right|>0$. Then $\lim _{n}\left|t_{g(n)}-\tau\right|=0$ holds. Hence we can apply Lemmas 2. Similarly, in the fourth case, we can apply Lemma 3.
Example 1. Let $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$ be real sequences with Condition (i) of Theorem 2. Let γ be a positive real number. Let E be the two dimensional real Hilbert space and put $C=\{x \in E:\|x\| \leq 1\}$. For $t \geq 0$, define a 2×2 matrix $T(t)$ by

$$
T(t)=\left[\begin{array}{cc}
\cos (\gamma t) & -\sin (\gamma t) \\
\sin (\gamma t) & \cos (\gamma t)
\end{array}\right]
$$

We can consider that $\{T(t): t \geq 0\}$ is a linear nonexpansive semigroup on C. Let P be the metric projection from C onto $\bigcap_{t>0} F(T(t))$, that is, $P x=0$ for all $x \in C$. Put $u=(1,0)$ and define a sequence $\left\{u_{n}\right\}$ by (1). Assume that the conjunction of Condition (ii) and Condition (iii) of Theorem 2 does not hold. Then there exists γ such that $\left\{u_{n}\right\}$ does not converge strongly to $P u$.
Proof. By Lemma 4, there exist a positive real number τ and a subsequence $\{f(n)\}$ of $\{n\}$ such that either (3) or (4) holds. We note that both (3) and (4) do not hold simultaneously. We put

$$
\gamma=4 \pi / \tau
$$

We also put

$$
\eta:= \begin{cases}\lim _{n}\left(t_{f(n)} \bmod \tau\right) / \alpha_{f(n)} \in[0, \infty) & \text { if (3) holds } \\ \lim _{n}\left(\left(t_{f(n)} \bmod \tau\right)-\tau\right) / \alpha_{f(n)} \in(-\infty, 0] & \text { if (4) holds. }\end{cases}
$$

In the case where (3) holds, since

$$
\sin \left(\gamma t_{f(n)}\right)=\sin \left(\gamma t_{f(n)} \bmod 4 \pi\right)=\sin \left(\gamma\left(t_{f(n)} \bmod \tau\right)\right)
$$

we have

$$
\lim _{n \rightarrow \infty} \frac{\sin \left(\gamma t_{f(n)}\right)}{\alpha_{f(n)}}=\lim _{n \rightarrow \infty} \frac{\gamma\left(t_{f(n)} \bmod \tau\right)}{\alpha_{f(n)}}=\gamma \eta
$$

In the case where (4) holds, since

$$
\sin \left(\gamma t_{f(n)}\right)=\sin \left(\left(\gamma t_{f(n)} \bmod 4 \pi\right)-4 \pi\right)=\sin \left(\gamma\left(\left(t_{f(n)} \bmod \tau\right)-\tau\right)\right)
$$

we have

$$
\lim _{n \rightarrow \infty} \frac{\sin \left(\gamma t_{f(n)}\right)}{\alpha_{f(n)}}=\lim _{n \rightarrow \infty} \frac{\gamma\left(\left(t_{f(n)} \bmod \tau\right)-\tau\right)}{\alpha_{f(n)}}=\gamma \eta
$$

Similarly, $\lim _{n} \sin \left(\gamma t_{f(n)} / 2\right) / \alpha_{f(n)}=\gamma \eta / 2$ holds in both cases. For $n \in \mathbb{N}$, we put a 2×2 matrix P_{n} by

$$
P_{n}=\frac{\alpha_{n}}{4\left(1-\alpha_{n}\right) \sin ^{2}\left(\gamma t_{n} / 2\right)+\alpha_{n}^{2}}\left[\begin{array}{cc}
a_{n} & -b_{n} \\
b_{n} & a_{n}
\end{array}\right]
$$

where $a_{n}=\alpha_{n}+2\left(1-\alpha_{n}\right) \sin ^{2}\left(\gamma t_{n} / 2\right)$ and $b_{n}=\left(1-\alpha_{n}\right) \sin \left(\gamma t_{n}\right)$. It is easy to verify that $u_{n}=P_{n} u$ for $n \in \mathbb{N}$ (cf. [14]). We obtain

$$
\lim _{n \rightarrow \infty} P_{f(n)}=\frac{1}{\gamma^{2} \eta^{2}+1}\left[\begin{array}{cc}
1 & -\gamma \eta \\
\gamma \eta & 1
\end{array}\right]=\frac{1}{\sqrt{\gamma^{2} \eta^{2}+1}}\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

where $\theta:=\arctan (\gamma \eta) \in(-\pi / 2, \pi / 2)$. Therefore

$$
\lim _{n \rightarrow \infty} u_{f(n)}=\frac{1}{\sqrt{\gamma^{2} \eta^{2}+1}}\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] u \neq 0=P u
$$

holds.
From Corollary 1 and Example 1, we obtain the following.
Theorem 3. Let E be a Hilbert space whose dimension is more than 1. Let $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$ be real sequences satisfying Condition (i) of Theorem 2. Then the following are equivalent:

- Conditions (ii) and (iii) of Theorem 2 hold.
- If $\{T(t): t \geq 0\}$ is a one-parameter nonexpansive semigroup on a bounded closed convex subset C of $E, u \in C,\left\{u_{n}\right\}$ is a sequence defined by (1) and P is the metric projection from C onto $\bigcap_{t \geq 0} F(T(t))$, then $\left\{u_{n}\right\}$ converges strongly to Pu.

4. Additional Results

In [13], we have improved Theorem 1 as follows. In this section, we first compare Theorem 2 with Theorem 4.

Theorem 4 ([13]). Let $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$ be real sequences satisfying Conditions (i) and (ii) of Theorem 2 and
(iii) $s_{n}:=\liminf _{m}\left|t_{m}-t_{n}\right|>0$ for $n \in \mathbb{N}$ and $\lim _{n} \alpha_{n} / s_{n}=0$.

Then the same conclusion of Theorem 2 holds.
(iii) of Theorem 4 is stronger than Condition (iii) of Theorem 2 because Condition (iii) of Theorem 2 is a sufficient and necessary condition. It is a natural question of whether (iii) of Theorem 4 is strictly stronger.

Example 2. Define functions f and g from \mathbb{N} into $\mathbb{N} \cup\{0\}$ and real sequences $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$ by

- $f(n)=\max \{k \in \mathbb{N} \cup\{0\}: k(k+1) / 2<n\}$
- $g(n)=n-f(n)(f(n)+1) / 2$
- $t_{n}=2^{-g(n)}$ if $n=g(n)(g(n)+1) / 2$, and $t_{n}=2^{-g(n)}+4^{-n}$ otherwise.
- $\alpha_{n}=4^{-2 n}$.

Then $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$ satisfy Conditions (i)-(iii) of Theorem 2 , however, do not satisfy (iii) of Theorem 4.

Remark. The sequence $\left\{t_{n}\right\}$ is

$$
\frac{1}{2}, \frac{1}{2}+\frac{1}{4^{2}}, \frac{1}{2^{2}}, \frac{1}{2}+\frac{1}{4^{4}}, \frac{1}{2^{2}}+\frac{1}{4^{5}}, \frac{1}{2^{3}}, \frac{1}{2}+\frac{1}{4^{7}}, \frac{1}{2^{2}}+\frac{1}{4^{8}}, \frac{1}{2^{3}}+\frac{1}{4^{9}}, \frac{1}{2^{4}}, \frac{1}{2}+\frac{1}{4^{11}}, \cdots
$$

Proof. We note that if $n=m(m+1) / 2$ for some $m \in \mathbb{N}$, then $g(n)=m$. It is obvious that Conditions (i) and (ii) of Theorem 2 hold. Since $2^{-\nu}$ is a cluster point of $\left\{t_{n}\right\}$ for every $\nu \in \mathbb{N}$, we have

$$
s_{m(m+1) / 2}:=\liminf _{j \rightarrow \infty}\left|t_{j}-t_{m(m+1) / 2}\right|=\liminf _{j \rightarrow \infty}\left|t_{j}-2^{-m}\right|=0
$$

for all $m \in \mathbb{N}$. Hence (iii) of Theorem 4 does not hold. Let us prove Condition (iii) of Theorem 2. Fix $\tau \in[0, \infty)$. We consider the following three cases:

- $\tau=0$
- $\tau=2^{-\nu}$ for some $\nu \in \mathbb{N}$
- otherwise

In the first case, we have

$$
\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{t_{n}-\tau}=\lim _{n \rightarrow \infty} \frac{4^{-2 n}}{t_{n}} \leq \lim _{n \rightarrow \infty} \frac{4^{-2 n}}{2^{-g(n)}} \leq \lim _{n \rightarrow \infty} \frac{4^{-2 n}}{2^{-n}}=0 .
$$

In the second case, considering the two cases of $g(n) \leq \nu$ and $g(n)>\nu$, we have

$$
\left|t_{n}-\tau\right| \geq \min \left\{4^{-n}, 2^{-\nu-1}-4^{-n}\right\}
$$

for $n \in \mathbb{N}$ with $n>\nu(\nu+1) / 2$. Hence

$$
\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{\left|t_{n}-\tau\right|} \leq \lim _{n \rightarrow \infty} \frac{4^{-2 n}}{\min \left\{4^{-n}, 2^{-\nu-1}-4^{-n}\right\}}=0
$$

In the third case, we have

$$
\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{\left|t_{n}-\tau\right|} \leq \frac{\lim _{n} 4^{-2 n}}{\liminf _{n}\left|t_{n}-\tau\right|}=\frac{0}{\liminf _{n}\left|t_{n}-\tau\right|}=0
$$

Therefore Condition (iii) of Theorem 2 holds.
Finally we study Condition (iii) of Theorem 2 more deeply.
For an arbitrary set A, we denote by $\sharp A$ the cardinal number of A. For a subset A of a topological space, we also denote by A^{d} the derived set of A. That is, $x \in A^{d}$ if and only if x belongs to the closure of $A \backslash\{x\}$. We recall that A is dense in itself if $A \subset A^{d}$. We define A^{p} by

$$
A^{p}=\bigcup\{B \subset A: B \text { is dense in itself }\} .
$$

A^{p} is called the perfect kernel of $A . A$ is called scattered if $A^{p}=\varnothing$. We know that A^{p} is perfect under the relative topology for A. We also know that $A \backslash A^{p}$ is scattered, that is, A can be written as the union of two disjoint sets, one perfect, the other scattered. See [8, 16].

Let α be an ordinal number. We denote by α^{+}and α^{-}the successor and the predecessor of α, respectively. We recall that α is isolated if α^{-}exists. α is limit if α^{-}does not exist.

Proposition 1. Let A be a subset of a topological space. Let γ be an ordinal number with $\sharp \gamma>\sharp A$ and $\sharp \gamma \geq \sharp \mathbb{N}$. Put $D=\{\alpha: \alpha \leq \gamma\}$. Define a net $\left\{A_{\alpha}\right\}_{\alpha \in D}$ of subsets of A by

$$
A_{\alpha}= \begin{cases}A & \text { if } \alpha=0 \\ A_{\alpha^{-}} \cap\left(A_{\alpha^{-}}{ }^{d}\right) & \text { if } \alpha \text { is isolated } \\ \bigcap\left\{A_{\beta}: \beta<\alpha\right\} & \text { if } \alpha \text { is limit. }\end{cases}
$$

Then $A_{\gamma}=A^{p}$ holds.

Proof. It is obvious that $\alpha \leq \beta$ implies $A_{\beta} \subset A_{\alpha}$. We can easily show by transfinite induction $A^{p} \subset A_{\alpha}$ because $A^{p} \subset B$ implies $A^{p} \subset B \cap B^{d}$. Arguing by contradiction, we assume $A^{p} \varsubsetneqq A_{\gamma}$. Since $A^{p} \varsubsetneqq B \subset A$ implies $B \cap B^{d} \varsubsetneqq B$, we have $A_{\alpha^{+}} \varsubsetneqq A_{\alpha}$. Thus

$$
\begin{aligned}
\sharp \gamma & =\sharp\{\alpha: \alpha<\gamma\}=\sharp\{\alpha: \alpha \leq \gamma\} \\
& =\sharp\{\alpha: \alpha \leq \gamma, \alpha \text { is isolated }\} \\
& \leq \sharp \sqcup\left\{A_{\alpha^{-}} \backslash A_{\alpha}: \alpha \leq \gamma, \alpha \text { is isolated }\right\} \\
& =\sharp\left(A \backslash A_{\gamma}\right) \leq \sharp A,
\end{aligned}
$$

which contradicts $\sharp A<\sharp \gamma$. Therefore we obtain $A_{\gamma}=A^{p}$.
Proposition 2. Let $\left\{t_{n}\right\}$ be a real sequence and put $A=\left\{t_{n}: n \in \mathbb{N}\right\}$. Then the following are equivalent:
(i) There exists a sequence $\left\{\alpha_{n}\right\}$ of positive real numbers satisfying $\lim _{n} \alpha_{n} /\left(t_{n}-\right.$ $\tau)=0$ for all $\tau \in \mathbb{R}$.
(ii) A is scattered, and $\sharp\left\{n: t_{n}=\tau\right\}<\infty$ for all $\tau \in \mathbb{R}$.

Remark. If $\left\{t_{n}\right\}$ satisfies the assumption of Theorem 4 , then A is obviously scattered.
Proof. In order to show (i) implies (ii), we assume that (ii) does not hold and let $\left\{\alpha_{n}\right\}$ be a sequence of positive real numbers. In the case where $\sharp\left\{n: t_{n}=\tau\right\}=\infty$ for some $\tau \in$ \mathbb{R}, it is obvious $\lim \sup _{n} \alpha_{n} /\left(t_{n}-\tau\right)=\infty$. So we consider the other case, where $A^{p} \neq \varnothing$. We first choose $f(1) \in \mathbb{N}$ such that $t_{f(1)} \in A^{p}$, and put $B_{1}=\left(t_{f(1)}-\alpha_{f(1)}, t_{f(1)}+\alpha_{f(1)}\right)$. Then from $t_{f(1)} \in\left(A^{p}\right)^{d}$, we have $\sharp\left(A^{p} \cap B_{1}\right)=\infty$. So we can choose $f(2) \in \mathbb{N}$ such that $f(2)>f(1)$ and $t_{f(2)} \in A^{p} \cap B_{1}$. We put

$$
B_{2}=B_{1} \cap\left(t_{f(2)}-\alpha_{f(2)}, t_{f(2)}+\alpha_{f(2)}\right) .
$$

Then since $t_{f(2)} \in\left(A^{p}\right)^{d}$, we have $\sharp\left(A^{p} \cap B_{2}\right)=\infty$. So we can choose $f(3) \in \mathbb{N}$ such that $f(3)>f(2)$ and $t_{f(3)} \in A^{p} \cap B_{2}$. Continuing this argument, we have a subsequence $\{f(n)\}$ of $\{n\}$ and a sequence $\left\{B_{n}\right\}_{n=1}^{\infty}$ of nonempty open intervals satisfying

- $B_{1} \supset B_{2} \supset B_{3} \supset \cdots ;$
- $B_{n} \subset\left[t_{f(n)}-\alpha_{f(n)}, t_{f(n)}+\alpha_{f(n)}\right]$ for all $n \in \mathbb{N}$.

So $\left\{\left[t_{f(n)}-\alpha_{f(n)}, t_{f(n)}+\alpha_{f(n)}\right]\right\}$ has the finite intersection property. Hence there exists $\tau \in \mathbb{R}$ such that $\tau \in \bigcap_{n=1}^{\infty}\left[t_{f(n)}-\alpha_{f(n)}, t_{f(n)}+\alpha_{f(n)}\right]$. Then we have

$$
\limsup _{n \rightarrow \infty} \frac{\alpha_{n}}{\left|t_{n}-\tau\right|} \geq \limsup _{n \rightarrow \infty} \frac{\alpha_{f(n)}}{\left|t_{f(n)}-\tau\right|} \geq 1
$$

Therefore (i) does not hold in both cases. We have shown (i) implies (ii). Let us prove (ii) implies (i). We assume (ii). Let γ be an ordinal number with $\sharp \gamma=\sharp \mathbb{R}$ and put $D=\{\alpha: \alpha \leq \gamma\}$. Define a net $\left\{A_{\alpha}\right\}_{\alpha \in D}$ of subsets of A as in Proposition 1. By Proposition 1, $A^{p}=\varnothing$ holds. So we can define a function κ from \mathbb{N} into D such that

$$
t_{n} \in A_{\kappa(n)} \quad \text { and } \quad t_{n} \notin A_{\kappa(n)^{+}}
$$

Define a function δ from \mathbb{N} into $(0, \infty]$ by

$$
\delta(n)=\inf \left\{\left|t_{n}-s\right|: s \in A_{\kappa(n)} \backslash\left\{t_{n}\right\}\right\},
$$

where $\inf \varnothing=\infty$. We note $\delta(n)>0$ because $t_{n} \notin A_{\kappa(n)^{+}}$. We choose a real sequence $\left\{\alpha_{n}\right\}$ satisfying

$$
0<\alpha_{n}<\delta(n) / n \quad \text { and } \quad \alpha_{n+1}<\alpha_{n}
$$

Fix $\tau \in \mathbb{R}$ and $\varepsilon>0$. Then there exists $\nu \in \mathbb{N}$ such that $2 / \nu<\varepsilon$. It is obvious that $n \geq \nu$ implies $2 \alpha_{n} / \varepsilon<\delta(n)$. We shall show

- $m>n \geq \nu, \alpha_{n} /\left|t_{n}-\tau\right|>\varepsilon, \alpha_{m} /\left|t_{m}-\tau\right|>\varepsilon$ and $t_{m} \neq t_{n}$ imply $\kappa(m)<\kappa(n)$.

Arguing by contradiction, we assume $\kappa(m) \geq \kappa(n)$. Then since $t_{m} \in A_{\kappa(n)} \backslash\left\{t_{n}\right\}$, we have

$$
\left|t_{n}-t_{m}\right| \geq \delta(n)>2 \alpha_{n} / \varepsilon
$$

Since $\alpha_{m}<\alpha_{n}$, we have

$$
2 \alpha_{n} / \varepsilon<\left|t_{n}-t_{m}\right| \leq\left|t_{n}-\tau\right|+\left|t_{m}-\tau\right|<\alpha_{n} / \varepsilon+\alpha_{m} / \varepsilon<2 \alpha_{n} / \varepsilon,
$$

which is a contradiction. Therefore we have shown $\kappa(m)<\kappa(n)$. Since there does not exist a strictly decreasing infinite sequence of ordinal numbers, we have

$$
\sharp\left\{n \in \mathbb{N}: \alpha_{n} /\left|t_{n}-\tau\right|>\varepsilon\right\}<\infty .
$$

Since $\varepsilon>0$ is arbitrary, we obtain $\lim _{n} \alpha_{n} /\left|t_{n}-\tau\right|=0$.

References

[1] L. P. Belluce and W. A. Kirk, Nonexpansive mappings and fixed-points in Banach spaces, Illinois J. Math, 11 (1967), 474-479. MR0215145
[2] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. USA, 54 (1965), 1041-1044. MR0187120
[3] , Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Ration. Mech. Anal., 24 (1967), 82-90. MR0206765
[4] R. E. Bruck, A common fixed point theorem for a commuting family of nonexpansive mappings, Pacific J. Math., 53 (1974), 59-71. MR0361945
[5] R. DeMarr, Common fixed points for commuting contraction mappings, Pacific J. Math., 13 (1963), 1139-1141. MR0159229
[6] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics 28, Cambridge University Press (1990). MR1074005
[7] W. A. Kirk and B. Sims, Handbook of metric fixed point theory, Kluwer Academic Publishers (2001). MR1904271
[8] K. Kuratowski, Topology I, Academic Press (1966). MR0217751
[9] T. C. Lim, A fixed point theorem for families on nonexpansive mappings, Pacific J. Math., 53 (1974), 487-493. MR0365250
[10] T. Suzuki, On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces, Proc. Amer. Math. Soc., 131 (2003), 2133-2136. MR1963759
[11] , Common fixed points of one-parameter nonexpansive semigroups, Bull. London Math. Soc., 38 (2006), 1009-1018. MR2285255
[12] , Browder's type convergence theorems for one-parameter semigroups of nonexpansive mappings in Banach spaces, Israel J. Math., 157 (2007), 239-257. MR2342448
[13] , Some comments about recent results on one-parameter nonexpansive semigroups, Bull. Kyushu Inst. Technol., 54 (2007), 13-26. MR2371765
[14] \qquad , Browder convergence and Mosco convergence for families of nonexpansive mappings, Cubo, 10 (2008), 101-108.
[15] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers (2000). MR1864294
[16] S. Willard, General Topology, Dover (2004). MR2048350
(S. Akiyama) Department of Mathematics, Faculty of Science, Nifgata University, Nilgata 950-2181, Japan

E-mail address: akiyama@math.sc.niigata-u.ac.jp
(T. Suzuki) Department of Basic Sciences, Kyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan

E-mail address: suzuki-t@mns.kyutech.ac.jp

[^0]: 2000 Mathematics Subject Classification. 47H20.
 Key words and phrases. Nonexpansive semigroup, common fixed point, Browder's convergence, perfect kernel.

 The authors are supported in part by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology (No. 18540020, No. 18740075).

