BROWDER’S CONVERGENCE FOR ONE-PARAMETER
NONEXPANSIVE SEMIGROUPS

SHIGEKI AKIYAMA AND TOMONARI SUZUKI

ABSTRACT. We give the sufficient and necessary condition of Browder’s convergence
theorem for one-parameter nonexpansive semigroups which was proved in [T. Suzuki,
Browder’s type convergence theorems for one-parameter semigroups of nonexpansive
mappings in Banach spaces, Israel J. Math., 157 (2007), 239-257]. We also discuss the
perfect kernels of topological spaces.

1. INTRODUCTION

Let C be a closed convex subset of a Banach space E. A family of mappings {T'(t) : t >
0} is called a one-parameter strongly continuous semigroup of nonexpansive mappings
(one-parameter nonexpansive semigroup, for short) on C' if the following are satisfied:

(i) For each t > 0, T'(t) is a nonexpansive mapping on C, that is,
1T(t)x =Tyl < [l —yll
holds for all z,y € C.
(i) T(s+t) =T(s) o T(t) for all s,t > 0.
(iii) For each z € C, the mapping ¢ — T'(t)x from [0, 00) into C' is strongly continu-
ous.
There are six papers concerning the existence of common fixed points of {T'(t) : ¢t > 0};
see [1, 2, 4, 5,9, 11]. Recently, Suzuki [11] proved that ﬂt>0F(T(t)) is nonempty
provided every nonexpansive mapping on C' has a fixed point, where F (T(t)) is the
set of all fixed points of T'(t). He also proved a semigroup version of Browder’s [3]
convergence theorem in [10, 12].

Theorem 1 ([12]). Let 7 be a nonnegative real number. Let {c,} and {t,} be real
sequences satisfying

(i) 0<a,<1and0<t, forneN;
(i) lim, t, = 7;
(iii) t, # 7 forn € N and lim, a,,/(t, — 7) = 0.
Let C be a weakly compact convex subset of a Banach space E. Assume that either of
the following holds:

e F is uniformly convex with uniformly Gateaux differentiable norm.

e I is uniformly smooth.

e F is a smooth Banach space with the Opial property and the duality mapping J
of E is weakly sequentially continuous at zero.
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Let {T'(t) : t > 0} be a one-parameter nonezpansive semigroup on C. Fizu € C and
define a sequence {u,} in C by

(1) Uy = (1 — ) T(ty)u, + apu

forn € N. Then {u,} converges strongly to Pu, where P is the unique sunny nonex-
pansive retraction from C onto (5, F(T()).

See [6, 7, 15] for the notions such as ‘Opial property’, etc.
In this paper, we give the sufficient and necessary condition on {a,} and {¢,}.

2. SUFFICIENCY

Throughout this paper we denote by N the set of all positive integers and by R the
set of all real numbers.
In this section, we generalize Theorem 1.

Theorem 2. Let {a,} and {t,} be real sequences satisfying
(i) 0<a, <1land0<t, forn eN;
(i) {t,} is bounded,
(iii) lim, o, /(t, —7) =0 for all T € [0, 00), where 1/0 = co.
Let E, C, {T(t) : t > 0}, P, u and {u,} be as in Theorem 1. Then {u,} converges
strongly to Pu.

Proof. Let {f(n)} be an arbitrary subsequence of {n}. Since {t,} is bounded, so is
{tmn)}. Hence there exists a cluster point 7 € [0,00) of {ts4,}. From (iii), there exists
v € N such that tf,) # 7 and t4,) # 0 for n € N with n > v. We choose a subsequence
{g(n)} of {n} such that g(1) > v and {tso4(n)} converges to 7. From (iii) again, we have

lim —2%90 .
=00 fogn) = T
By Theorem 1, {tog(n)} converges strongly to Pu. Since {f(n)} is arbitrary, we obtain
that {u,} converges strongly to Pu. O
As a direct consequence of Theorem 2, we obtain the following.

Corollary 1. Let {a,} and {t,} be real sequences satisfying Conditions (i)—(iii) of
Theorem 2. Let {T'(t) : t > 0} be a one-parameter nonexpansive semigroup on a bounded
closed convex subset C' of a Hilbert space E. Let P be the metric projection from C' onto
Niso F(T(1)). Fizu € C and define a sequence {u,} in C by (1). Then {u,} converges
strongly to Pu.

We note that we need Condition (i) in order to define {u,}. In the remainder of this
paper, we discuss Conditions (ii) and (iii).
3. NECESSITY

In this section, we shall show that Conditions (ii) and (iii) of Theorem 2 are best
possible, in a sense that we cannot relax these conditions on {«,} and {¢,} any more.
For real numbers s and ¢ with ¢ > 0, we define ‘mod’ by

smod t = s — [s/t]t,

where [s/t] is the maximum integer not exceeding s/t.
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Lemma 1. Let {a,} and {t,} be real sequences satisfying Condition (i) of Theorem
2. Assume limsup,, t,, = oco. Then for every nonnegative real number v, there exists a
positive real number T such that

e7%)

lims = 00.
linﬁogp (t, mod 7) — v >

Proof. We shall define two real sequences {e,} and {7,} and a subsequence {f(n)} of
{n} satisfying the following.

(i)0<e,<landv+1+¢, <,

(i) apm)/((tpn) mod 7) —v) > n for T € [1, — &5, 7).

(111) [Tn — En, Tn] 2 [Tn—i-l — En+1, Tn+1]'
We denote t () by s, and a @) by 3, for n € N. We choose f(1) satisfying s; > 2v+2.
We put

e1:=01/2€(0,1) and 7 =81 —v>v+2>v+1+¢.
If 7 € [y — &1, 7], then since
s1 s1 _ s

$1—v T T T Tm—e&  s1/2

S1 S1

we have
0<(symod7)—v=s5—T—v=m —7<e <[,
which implies (ii). We assume that ¢,, 7, and f(n) are defined for some n € N. We
choose f(n+ 1) satistying f(n+1) > f(n) and S,41 > 27, (7, — €,)/€n. Then we have
Sn+1 > Sn+1
Tn — En Tn

+ 2.

Spi1 > T, and

Hence there exist real numbers p and ¢ such that
Sn41 Sn+1

Tn—n <p<q<T, and = +1€eN.
p q
We put
Spe1 — U -
Tntl = —( = )q and  €,41 = —ﬁ 19 .
Sn+1 (n + 1) Sn+1

Then it is obvious that 7,,,1 < ¢. Since
p—v—LFun/in+1)>p—v—-1>7,—¢,—v—1>0,
We have
Sng1 =V = Bp1/(n+1) Sn41D  Snp1 — U — By /(n+1)

Tp+l — Ent+1 — ( -

Sn+1 Sn+1 — D Sn+1
—p Spp1 — U = Bny1/(n + 1) >p
Sp+1 — P
Therefore
Tn = En S D < Tntl —Entl < Tl K¢ < Ty
So we note

(Spe1 mod T) — U = Spy1 — T Spp1/q — v
for 7 € [Th11 — €ny1, Tnaa]. Since
(841 mod 7,01) —v =0 and (an mod (7,41 — enﬂ)) —v=LFh1/(n+1),

we have
0 < (spt1mod 7)—v < fi1/(n+1)
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for 7 € [Th41 — €nt1, Tny1]. Therefore we have defined {e,}, {7,} and {f(n)} which
satisfy (i)—(iii). Cantor’s intersection theorem yields that there exists 7 € R such that
T € (oo, [Tn — €n, Tn). By (ii), we have

I On > i a > i

im su imsu im n = oo.

ol (t, mod 7) —v — ol ($p, mod 7) —v ~ n—oo

This completes the proof. Il

Lemma 2. Let {a,} and {t,} be real sequences with Condition (i) of Theorem 2. As-
sume

(2) lim — " >0 and lim tn =T

n—00 |tn — 7‘| n—00

for some T € (0,00). Then there exists a subsequence {f(n)} of {n} such that either

(3) 711220 tf(n)af% >0 and nhjgo(tf(”) mod 7) =0
or

4 1 <0 d lim (tf@,) mod 7) =
@ 8 Gy mod 1) 7 <0 0 g (b mod m) =
holds.

Proof. 1f there exists a subsequence {f(n)} of {n} such that t;,y > 7 for all n € N,
then

tf(n) mod T = tf(n) — T = |tf(n) — 7'|

for sufficiently large n € N. Thus (3) holds. If there exists a subsequence {f(n)} of {n}
such that ¢4,y < 7 for all n € N, then

(trmy mod 7) =7 =ty =7 = —|tsm) — 7|
for all n € N. Thus (4) holds. d

Lemma 3. Let {a,} and {t,} be real sequences with Condition (i) of Theorem 2. As-

sume
lim &n >0 and lim ¢, =0.

n—oo n n—oo

Then (3) holds for every positive real number T and every subsequence {f(n)} of {n}.
Proof. Obvious. O

Lemma 4. Let {a,} and {t,} be real sequences with Condition (i) of Theorem 2. As-
sume that the conjunction of Condition (ii) and Condition (iii) of Theorem 2 does not

hold. Then there ezist a positive real number T and a subsequence {f(n)} of {n} such
that either (3) or (4) holds.

Proof. We consider the following four cases:
e limsup, ¢, = oo
e limsup, t, < oo and limsup,, a;,, > 0
e limsup,, ¢, < oo, lim, a,, = 0 and lim sup,, a,, /|t,, — 7| > 0 for some 7 € (0, 00)
e limsup, t, < oo, lim, a,, = 0 and lim sup,, v, /t,, > 0.
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In the first case, using Lemma 1, there exist a positive real number 7 and a subsequence
{f(n)} of {n} such that

It is obvious that lim,(ts,) mod 7) = 0. Thus (3) holds. Next, we note that it is
sufficient to show the existence of a subsequence {g(n)} of {n} such that we can apply
either Lemma 2 or Lemma 3. In the second case, we can choose a subsequence {g(n)} of
{n} such that lim, ay@,) > 0 and {t,n)} converges to some nonnegative real number 7.
Then {oy@m) } and {tyq) } satisfy (2). So we can apply either Lemma 2 or Lemma 3. In the
third case, we can choose a subsequence {g(n)} of {n} such that lim,, cg(n)/|tgm)—7| > 0.
Then lim,, |t4n) — 7| = 0 holds. Hence we can apply Lemmas 2. Similarly, in the fourth
case, we can apply Lemma 3. Il

Example 1. Let {«,} and {¢,} be real sequences with Condition (i) of Theorem 2. Let
~ be a positive real number. Let E be the two dimensional real Hilbert space and put
C={x e FE:|z|| <1}. For t > 0, define a 2 x 2 matrix 7'(t) by

| cos(yt) —sin(yt)
() = sin(yt) cos(vt)
We can consider that {T'(¢) : ¢ > 0} is a linear nonexpansive semigroup on C. Let P
be the metric projection from C onto ()~ F(T'(t)), that is, Pz = 0 for all z € C. Put
u = (1,0) and define a sequence {u,} by (1). Assume that the conjunction of Condition
(ii) and Condition (iii) of Theorem 2 does not hold. Then there exists v such that {u,}
does not converge strongly to Pu.

Proof. By Lemma 4, there exist a positive real number 7 and a subsequence {f(n)}
of {n} such that either (3) or (4) holds. We note that both (3) and (4) do not hold
simultaneously. We put

v=4m/T.
We also put
~Jlimy, () mod T) /gy € [0, 00) if (3) holds
= limy, ((t(n) mod 7) — 7) /apm) € (—00,0] if (4) holds.

In the case where (3) holds, since

sin(y tp(ny) = sin(y tp() mod 47) = sin (7 (t(n) mod 7)),
we have vt . q
sin n , ) IO
w Otw) e vt med 7).

In the case where (4) holds, since

sin(ytym)) = sin ((ytm) mod 47) —4m) =sin (v ((¢4(n) mod 7) — 7)),

we have

lim sin(7y tg(n)) — m ~y ((tf(n) mod 7) — 7') .

nee Qif(n) oo Qf(n)

Similarly, limy, sin(ytfuy/2)/apm) = vn/2 holds in both cases. For n € N, we put a
2 X 2 matrix P, by

P = Qn Qp, —bn
"4l = ap) sin? (Yt /2) a2 [ bn an |7
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where a, = o, +2 (1 — ) sin*(vt,/2) and b, = (1 — ) sin(yt,). It is easy to verify
that u,, = P,u for n € N (cf. [14]). We obtain

lim Porr — 1 I —yn | 1 cos(f) —sin(0)
n—oo AW T N2 Ly 1 22+ 1 | sin(0)  cos(6) |’
where 0 := arctan(yn) € (—n/2,7/2). Therefore
: B 1 cos(f) —sin(0) B
nh—>nolo Urtm) = /22 + 1 [ sin(d)  cos(d) | 70="Pu
holds. 4

From Corollary 1 and Example 1, we obtain the following.

Theorem 3. Let E be a Hilbert space whose dimension is more than 1. Let {c,} and
{tn} be real sequences satisfying Condition (i) of Theorem 2. Then the following are
equivalent:

e Conditions (ii) and (iii) of Theorem 2 hold.

o [f{T(t) :t > 0} is a one-parameter nonexpansive semigroup on a bounded closed
convez subset C' of E, uw € C, {u,} is a sequence defined by (1) and P is the
metric projection from C' onto ﬂt>0F(T(t)), then {u,} converges strongly to
Pu.

4. ADDITIONAL RESULTS

In [13], we have improved Theorem 1 as follows. In this section, we first compare
Theorem 2 with Theorem 4.

Theorem 4 ([13]). Let {a,} and {t,} be real sequences satisfying Conditions (i) and
(ii) of Theorem 2 and

(iii) s, := liminf,, |t,, —t,| > 0 for n € N and lim,, a,,/s,, = 0.
Then the same conclusion of Theorem 2 holds.
(iii) of Theorem 4 is stronger than Condition (iii) of Theorem 2 because Condition

(iii) of Theorem 2 is a sufficient and necessary condition. It is a natural question of
whether (iii) of Theorem 4 is strictly stronger.

Example 2. Define functions f and g from N into N U {0} and real sequences {«,}
and {t,} by

e f(n) =max{k e NU{0}: k(k+1)/2<n}

o g(n) =n—f(n)(f(n)+1)/2

o t, =279 if n = g(n) (g(n) +1)/2, and ¢, = 279 4+ 47" otherwise.

° o, =472"
Then {a,} and {t,} satisfy Conditions (i)—(iii) of Theorem 2, however, do not satisfy
(iii) of Theorem 4.

Remark. The sequence {t,} is

11+1 1 1+1 1+1 1 1+1 1+1 1+1 1 1+1
272 427227 2 447 22 0 457 237 2 4T7 22 0 487 23 497 247 2 4117
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Proof. We note that if n = m (m + 1)/2 for some m € N, then g(n) = m. It is obvious
that Conditions (i) and (ii) of Theorem 2 hold. Since 27" is a cluster point of {¢,} for
every v € N, we have

Sm (m+1)/2 = lim inf |tj —tm (m+1)/2| = lim inf |tj - 2—m| =0
j—o00 j—o00

for all m € N. Hence (iii) of Theorem 4 does not hold. Let us prove Condition (iii) of
Theorem 2. Fix 7 € [0,00). We consider the following three cases:

e7=0

o 7 =277 for somerv €N

e otherwise

In the first case, we have
—2n —2n 472n
lim = lim < lim —— < lim

n—oo t, — T n—oo Ty, n—oo 279(N) T nooo 271

Qp

=0.

In the second case, considering the two cases of g(n) < v and g(n) > v, we have
t, — 7| > min {47, 27" —47"}
for n € N with n > v (v + 1)/2. Hence

. o, . 4720
lim ——— < lim — =
n—o0 |tn — T’ n—oo min {4_”7 9—v—1 _ 4‘”}

In the third case, we have

. o, lim,, 472" 0
lim < — = — = 0.
n—oo |t, — 7| = liminf, |t, — 7| liminf, |t, — 7|
Therefore Condition (iii) of Theorem 2 holds. O

Finally we study Condition (iii) of Theorem 2 more deeply.

For an arbitrary set A, we denote by fA the cardinal number of A. For a subset A of
a topological space, we also denote by A? the derived set of A. That is, z € A% if and
only if x belongs to the closure of A\ {z}. We recall that A is dense in itself if A C A<
We define AP by

AP = | {B C A: B is dense in itself}.

AP is called the perfect kernel of A. A is called scattered if AP = @. We know that AP is
perfect under the relative topology for A. We also know that A\ AP is scattered, that
is, A can be written as the union of two disjoint sets, one perfect, the other scattered.
See [8, 16].

Let o be an ordinal number. We denote by at and a~ the successor and the prede-
cessor of «, respectively. We recall that « is isolated if o~ exists. « is limit if o~ does
not exist.

Proposition 1. Let A be a subset of a topological space. Let v be an ordinal number
with 4y > §A and §y > N, Put D = {a: o < v}. Define a net {As}acp of subsets of
A by

A ifa=0
Ay =R Ay N (A=Y if a is isolated
(As: B <a} ifaislimit
Then A, = AP holds.
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Proof. 1t is obvious that a < [ implies Ag C A,. We can easily show by transfinite
induction A? C A, because A? C B implies A? C B N B%. Arguing by contradiction,
we assume A? G A,. Since A? G B C A implies BNB? G B, we have A+ G A,. Thus

fy=Ha: a<y}=Ha: a<q}
=t{a: a <7, aisisolated}
<H HAa- \ An: a <7, aisisolated}
= 1A\ A,) <14,
which contradicts §A < §7. Therefore we obtain A, = AP. i

Proposition 2. Let {t,} be a real sequence and put A = {t, : n € N}. Then the
following are equivalent:

(i) There ezists a sequence {ay} of positive real numbers satisfying lim,, o, /(t, —

7) =0 for all T € R.
(ii) A is scattered, and g{n : t, =7} < oo for all T € R.

Remark. If {t,} satisfies the assumption of Theorem 4, then A is obviously scattered.

Proof. In order to show (i) implies (ii), we assume that (ii) does not hold and let {«a,,} be
a sequence of positive real numbers. In the case where §{n : t,, = 7} = oo for some 7 €
R, it is obvious lim sup,, a,, / (¢, —7) = 00. So we consider the other case, where A? # .
We first choose f(1) € N such that tyq) € AP, and put By = (1) — oy, tra) + ap))-
Then from ¢y € (AP)?, we have §(AP N By) = co. So we can choose f(2) € N such
that f(2) > f(1) and ty) € AP N B;. We put

By = BiN (o) — ape)tre) + ape)-

Then since tyo) € (AP)4, we have §(AP N By) = co. So we can choose f(3) € N such
that f(3) > f(2) and ty3) € APN B,. Continuing this argument, we have a subsequence
{f(n)} of {n} and a sequence {B,}°°, of nonempty open intervals satisfying

.BljBQDBgD"‘;

e B, C [tf(n) — Q) trm) + Oéf(n)] for all n € N.
So {[tf(n) — Qf(n), Lpn) T af(n)]} has the finite intersection property. Hence there exists
7 € R such that 7 € (), [tf(n) — ¥p(n), Lfn) + ¥pm)]- Then we have

« n
lim sup > lim sup _ i > 1.
oo [tn = T| 7 nooo [tpm) — 7]

Therefore (i) does not hold in both cases. We have shown (i) implies (ii). Let us prove

(ii) implies (i). We assume (ii). Let v be an ordinal number with §y = R and put

D = {a : a < ~v}. Define a net {A,}qcp of subsets of A as in Proposition 1. By

Proposition 1, A? = & holds. So we can define a function x from N into D such that
t, € Aﬁ(n) and t, & Aﬁ(n)+.

Define a function ¢ from N into (0, co] by

6(n) =inf {|t, — s : s € Aum) \ {ta}},
where inf @ = co. We note d(n) > 0 because ¢, ¢ A.n)+. We choose a real sequence
{a, } satisfying
0<a,<dn)/n and a1 < ay.
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Fix 7 € R and € > 0. Then there exists v € N such that 2/v < €. It is obvious that
n > v implies 2 o, /e < §(n). We shall show

em>n>v, a,/|lty — 7| > ¢, an/|tm — 7| > € and t,, # t, imply k(m) < k(n).
Arguing by contradiction, we assume s(m) > k(n). Then since t,, € Aym \ {tn}, we
have

[t — tm| > 0(n) > 2, /c.
Since «,, < «, we have
2an/e < |ty —tm| < |tw — 7|+ |tm — 7| < an/e + am/e < 2y /¢,

which is a contradiction. Therefore we have shown k(m) < xk(n). Since there does not
exist a strictly decreasing infinite sequence of ordinal numbers, we have

tH{neN:a,/|t, — 7| > e} < 0.

Since £ > 0 is arbitrary, we obtain lim, «,/|t, — 7| = 0. O
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