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Abstract

Let (an), n = 1, 2, . . . be a sequence of real numbers which is related with number
theoretic functions such as Pn, the n-th prime. We study the distribution of the
fractional parts of (an) using the concept of ”almost uniform distribution” defined in
[9]. Then we can show a generalization of the results of [2] on the convex property of
log Pn. The method may be extended as well to other oscillation problems of number
theoretical interest.

Let (an), n = 1, 2, . . . be a sequence of real numbers and A(I, (an), N) be the counting
function, that is, the number of n = 1, 2, . . . , N that {an} is contained in a certain interval
I ⊂ [0, 1]. Here we denote by {an} = an − [an], the fractional part of an. First we recall a
kind of generalization of the classical definition of uniform distribution modulo 1 (see [9],
[3] and [8]).

Definition. The sequence (an) is said to be almost uniformly distributed modulo 1 if
there exist a strictly increasing sequence of natural numbers (nj), j = 1, 2, . . . and, for
every pair of a, b with 0 ≤ a < b ≤ 1,

lim
j→∞

A([a, b), (an), nj)

nj

= b− a.

For example, we define (cn) by

cn =
n

21+[log2 n]
.
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Then (cn) is almost uniformly distributed modulo 1 but not uniformly distributed modulo
1. It is obvious that if the sequence (an) is uniformly distributed modulo 1, then almost
uniformly distributed modulo 1. On the contrary, if

nj+1 − nj = o(nj),

then almost uniformly distributed modulo 1 implies uniformly distributed modulo 1. Using
the classical method of uniform distribution theory (see e.g. [6]), we can show the following

Proposition 1. The sequence (an), n = 1, 2, . . . is almost uniformly distributed modulo
1 if and only if there exist a strictly increasing sequence of natural numbers (nj), j =
1, 2, . . ., such that for every real-valued continuous function on the interval [0, 1], we have

lim
j→∞

1

nj

nj∑

i=1

f({ai}) =
∫ 1

0
f(x)dx.

Proposition 2. (Weyl’s Criterion for almost uniformly distributed modulo 1)
The sequence (an), n = 1, 2, . . . is almost uniformly distributed modulo 1 if and only if
there exist a strictly increasing sequence of natural numbers (nj), j = 1, 2, . . ., such that
for every integer h, we have

lim
j→∞

1

nj

nj∑

i=1

exp(2πh
√−1ai) = 0.

We should mention the next generalization of Fejér’s Theorem.

Theorem 1. (Fejér’s Theorem for almost uniformly distributed modulo 1) Let
(f(n)), n = 1, 2, . . . be a sequence of real numbers and ∆f(n) = f(n + 1) − f(n). If the
following three conditions is satisfied, then (f(n)) is almost uniformly distributed modulo
1:

1. There exists a natural number N that ∆f(n) is monotone when n ≥ N (hereafter,
we say this property as ultimately monotone),

2. lim
n→∞∆f(n) = 0,

3. lim sup
n→∞

n|∆f(n)| = ∞.
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Note that the corresponding third condition for uniformly distributed modulo 1 is:

lim
n→∞n|∆f(n)| = ∞.

Moreover, it is shown in [4] (see also [5]) that lim supn→∞ n|∆f(n)| = ∞ is a necessary
condition for uniformly distributed modulo 1. Concerning this fact, in [3], it is shown
that (log n) is not almost uniformly distributed modulo 1 but almost uniformly distributed
modulo 1 in the ”average” sense. It is an interesting problem to study this delicate difference
between uniformly distributed modulo 1 and almost uniformly distributed modulo 1. We
can show the following:

Corollary 1. Let (g(n)) be a sequence of real numbers which satisfies three conditions:

(C1) g(n) = o(n),

(C2) The average f(n) = 1
n

∑n
k=1 g(k) is not almost uniformly distributed modulo 1,

(C3) lim sup
n→∞

|f(n)− g(n + 1)| = ∞.

Then ∆2f(n) changes its sign infinitely many times. Here ∆2f(n) = ∆(∆f(n)).

Proof. We have

∆f(n) =
1

n + 1

n+1∑

k=1

g(k)− 1

n

n∑

k=1

g(k)

=
1

n + 1
g(n + 1)− 1

n(n + 1)

n∑

k=1

g(k). (1)

This shows that lim
n→∞∆f(n) = 0. And by (1),

(n + 1)∆f(n) = g(n + 1)− f(n).

Thus
lim sup

n→∞
n|∆f(n)| = ∞.

If ∆f(n) is ultimately monotone, then f(n) is almost uniformly distributed modulo 1,
which contradicts the assumption. 2

Let Pn be the n-th prime. Now we show

Theorem 2. (log Pn) is not almost uniformly distributed modulo 1.
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Proof. Let t be a real number and π(x) be the number of primes less than or equal to x.
Consider the sum over primes p:

∑

p≤N

p
√−1t =

∫ N

3/2
x
√−1tdπ(x).

Integrating by parts of the right hand side, by using the prime number theorem of the
form:

π(x) =
x

log x
+ O(

x

log2 x
),

we have

∑

p≤N

p
√−1t =

N1+
√−1t

log N
−√−1t

∫ N

3/2

x
√−1t

log x
dx + O(

N

log2 N
)

=
N1+

√−1t

(1 +
√−1t) log N

+ O(
N

log2 N
).

Thus we see
1

π(N)

∑

p≤N

e
√−1t log p ∼ N

√−1t

1 +
√−1t

The right hand side is not zero. By using Proposition 2, we get the result. 2

Now we give a very different proof of the results of [2].

Theorem 3. ∆2 log Pn changes its sign infinitely many times.

Proof. Let g(n) = n log Pn− (n− 1) log Pn−1 and f(n) = log Pn in Corollary 1. (Here we
put P0 = 1 for example.) By using Theorem 2, it suffice to show (C1) and (C3). By using
prime number theorem, we have

g(n) ≤ n
Pn − Pn−1

Pn−1

+ log Pn−1,

= o(n).

For the condition (C3),

g(n + 1)− f(n) = (n + 1)(log Pn+1 − log Pn)

>
(n + 1)(Pn+1 − Pn)

Pn+1

∼ Pn+1 − Pn

log Pn

.
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Here we write f ∼ g if |f/g| → 1. P. Erdös [1] was the first to obtain

lim sup
n→∞

Pn+1 − Pn

log Pn

= ∞,

by showing

lim sup
n→∞

(Pn+1 − Pn)(log log log Pn)2

log Pn log log Pn log log log log Pn

> c > 0.

About the improvement of the constant c, see [7]. This completes the proof. 2

Our method to show this type of results can be generalized by a kind of ”linearity” in
many cases. To explain this, we notice

Theorem 4. Let l be a fixed positive integer, and Ci (i = 1, 2, . . . , l) be the real numbers
with

∑
Ci 6= 0. The sequence (

∑l−1
i=0 Ci log Pn+i) is not almost uniformly distributed modulo

1.

Proof. First, we consider the case (C log Pn). Without loss of generality, we may assume
that C > 0. Then we write C log Pn = logb Pn with a constant b > 1. To see the assertion,
replace e with b in the proof of Theorem 2.

If l > 1, it suffice to note that

l−1∑

i=0

Ci log Pn+i − log Pn

l−1∑

i=0

Ci = o(1).

This shows the assertion. 2

Theorem 5. Let l be a fixed positive integer, and fi (i = 1, 2, . . . , l) be the positive real
numbers. Then

∆2 log(P f1
n P f2

n+1 . . . P fl
n+l−1)

changes its sign infinitely many times.

Proof. Put

g(n) = n(
l∑

i=1

fi log Pn+i−1)− (n− 1)(
l∑

i=1

fi log Pn+i−2)

f(n) =
l∑

i=1

fi log Pn+i−1.

By using Corollary 1 and Theorem 4, in a similar manner as in the proof of Theorem 3,
we obtain the assertion. Here, we essentially used the positiveness of fi (i = 1, 2, . . . l) in
proving (C3). 2
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We expect that the conditions fi > 0 (i = 1, 2, . . . l) can be dropped.

Our method is applicable to a lot of arithmetic functions g(n) such that 1/n
∑

k≤n g(k)
is not almost uniformly distributed modulo 1. For example, we can show similar assertions
for the divisor function d(n) =

∑
d|n 1 as

1

n

n∑

k=1

d(k) = log n + (2γ − 1) + O(
1√
n

),

with the Euler constant γ. The proof for this case is easier, but the results do not seem
well worthy of stating here.
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