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§0. Introduction

In [2], the author studied the asymptotic behavior of the least common multiple of a
sequences {an}∞n=1 provided that it satisfies certain axioms (A1) and (A2) (see page 4).
Sequences defined by binary linear recurrence, for example, were handled there. A typical
result was

log |a1a2 · · · · · · an|
log[a1, a2, . . . , an]

= ζ(2) + O(
log n

n
), (1)

where [a1, a2, . . . , an] is the least common multiple of the terms a1, a2, . . . , an and ζ(·) is the
Riemann zeta function. On the origin of these problems and related works, see [7] [5] [1] [2]
[10]. To prove (1) in [2], the fundamental tool employed was to rewrite the least common
multiple by ”an inclusion exclusion principle”. This was done in [2] with the essential use
of the axioms (A1) and (A2). In this article, we employ a more sophisticated axiom

(S) (an, am) = |a(n,m)|.
We say that the non zero sequence {an}∞n=1 satisfying (S) to be a strongly divisible sequence.
This ”strong divisibility” was studied by several authors in [4] [3] [9]. And we prove that
the assertion of [2] still holds (See Theorem 1). It is easily seen that (S) is weaker than
(A1) and (A2). Furthermore, it is shown in Theorem 1 that the relation (2), which is the
”inclusion exclusion principle of the least common multiple”, is equivalent to the axiom
(S).

Our next problem is to find the good example of a strongly divisible sequence which has
appropriate asymptotic behavior. Let σ(u) be the Weierstrass sigma function associated
with some lattice. Put ψn(u) = σ(nu)/(σ(u)n2

). Then ψn(u) is an elliptic function with
respect to u and satisfies the recurrence relation:

∗Only for the private copy. See Japanese Journal of Math., Vol.22, no.1 (1996), 129 – 146, for the exact
published version.
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ψm+n(u)ψm−n(u) = ψm+1(u)ψm−1(u)ψn(u)2 − ψn+1(u)ψn−1(u)ψm(u)2,

and ψ0(u) = 0, ψ1(u) = 1. This relation was classically known and used to calculate the
algebraic relation between p(nu) and p(u), where p(u) is the Weierstrass p-function. The
sequence {ψn(u)}∞n=1 is determined completely by the initial values ψ2(u), ψ3(u) and ψ4(u)
when ψ2(u)ψ3(u) 6= 0. Now let ψi(u)(i = 2, 3, 4) be integers. The sequences of this type
are systematically studied by Ward. He showed in [12] and [13] that, when

ψ2(u)|ψ4(u) and (ψ3(u), ψ4(u)) = 1,

each ψn(u) is an integer and the sequence {ψn(u)} satisfies (S). In section 3, we prove the
average asymptotic formula for log |ψn(u)|. So, under certain conditions, we can derive the
asymptotic formula:

log |ψ1(u)ψ2(u) · · · · · ·ψn(u)|
log[ψ1(u), ψ2(u), . . . , ψn(u)]

= ζ(3) + O(
1

n
),

(Theorem 4), by using the method developed in [2]. As a by-product, in some special
cases, we can calculate log |σ(u)|, where u is a division point of some period of the elliptic
function (see section 4).

§1. The Fundamental Theorem.

Let {an}∞n=1 be a non zero integer sequence. We say that {an} is divisible when it has
the property:

(D) n|m implies an|am.

It is easily seen that the axiom (S) implies (D).

Theorem 1. Let {an}∞n=1 be a strongly divisible sequence. Then we have

[a1, a2, . . . , an] =
n∏

i=1

|M(i)| (2)

where M(i) =
∏

d|i(ai/d)
µ(d) and µ(·) is the Möbius function. Conversely, if a sequence of

non zero integers {an}∞n=1 satisfies (2) then {an}∞n=1 is strongly divisible.

Proof. We first prove the sufficiency. The case n = 1 is obvious. Assume the equality (2)
for n− 1. First we see that
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[a1, a2, . . . , an]/[a1, a2, . . . , an−1] = G.C.D.
i=1,2,...,n−1

(
an

(an, ai)

)

= |an|/
(

L.C.M.
i=1,2,...,n−1

a(n,i)

)
= |an|/

(
L.C.M.

d|n
an/d

)
.

Since {an} is divisible, we may restrict to the prime divisor p of n:

[a1, a2, . . . , an]/[a1, a2, . . . , an−1] = |an|/
(

L.C.M.
p|n

an/p

)
.

Using the inclusion exclusion principle, we have

= |an|
∏

p1,p2
(an/p1 , an/p2)

∏
p1,p2,p3,p4

(an/p1 , an/p2 , an/p3 , an/p4) · · ·∏
p1
|an/p1|

∏
p1,p2,p3

(an/p1 , an/p2 , an/p3) · · ·
(3)

= |an|
∏

p1,p2
|an/p1p2|

∏
p1,p2,p3,p4

|an/p1p2p3p4| · · ·∏
p1
|an/p1|

∏
p1,p2,p3

|an/p1p2p3| · · ·
= |M(n)|.

Thus the relation (2) is proved by induction.

Now we prove the necessity. So we assume the relation (2). Then every M(n) is an
integer because

|M(n)| = [a1, a2, . . . , an]/[a1, a2, . . . , an−1]. (4)

The axiom (S) is equivalent to the following statement:

if d1 6 |d2 and d2 6 |d1 then (M(d1),M(d2)) = 1.

This can easily be shown by the inverse relation a(n) =
∏

d|n M(d). In fact, let us assume
that there exists a pair d1 and d2 which satisfies

d1 < d2, d1 6 |d2, d2 6 |d1, p|M(d1) and p|M(d2),

where p is a prime. We also assume that d1 is chosen to be minimum under these conditions.
Denote by ordp(x) the multiplicities of p in the prime factorization of an integer x. Then
if d|d1, we have d|d2 or p 6 |M(d) by the minimality of d1. Thus

ordp ad1 =
∑

d|d1

ordp M(d) =
∑

d|(d1,d2)

ordp M(d) = ordp a(d1,d2).

But from (4), this means ordp M(d1) = 0. This is a contradiction. 2

The equality (3) can be found in Ward [14] Lemma 9.1. He also noticed in the same
paper that the axiom (S) is equivalent to:
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(R) There exists a function f from N to N such that

M |an is equivalent to f(M)|n.

We can easily show this equivalence itself. It seems that the main interest of Ward [14]
is to characterize this axiom (R) by using M(n). Now let us recall the axioms (A1) and
(A2) in [2]:

(A1) For each prime p, we denote by Sp the set of positive integer n’s so that an is divisible
by p. If Sp 6= φ, there exists an integer r(p) such that Sp coincides with the set of all
positive r(p) multiples,

(A2) For each prime p, there exists a weakly increasing function fp from N∪{0} to itself
satisfying the property ordp(an) = fp(ordp(n)), for n ∈ Sp.

We see that the axioms (A1) + (A2) are stronger than (R). So Theorem 1 of [2] is
a consequence of the above Theorem 1. But the author does not have a good, not too
artificial, example of strongly divisible sequence which does not satisfy both (A1) and
(A2).

Proposition 1. Let {an} and {bn} be strongly divisible sequences. Then the greatest
common divisor sequence {(an, bn)}∞n=1 is strongly divisible. Moreover, if we assume that
each bn is positive, then the composition sequence {abn}∞n=1 is also strongly divisible.

Proof. These are easily verified by the relations,

((an, bn), (am, bm)) = ((an, am), (bn, bm)) = (a(n,m), b(n,m))

and

(abn , abm) = |a(bn,bm)| = |ab(n,m)
|. 2

The similar assertion holds for the axioms (A1) and (A2) (see Proposition 1 and 2 in [2]).
Once we establish Theorem 1, the next two theorems follow immediately by the same proof
as for Proposition 3 of [2].

Theorem 2. Let {an} be a strongly divisible sequence which has the following asymptotic
behavior:

log |an| = Anl + O(nl−1ω(n)),
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with positive constant A and

ω(n) =

{
1 if l > 1
log n if l = 1.

Then we have

log[a1, a2, . . . , an] =
nl+1

(l + 1)ζ(l + 1)
+ O(nlω(n)) (5)

and
log |a1a2 · · · · · · an|
log[a1, a2, . . . , an]

= ζ(l + 1) + O(
ω(n)

n
). (6)

Theorem 3. Let {an} be a strongly divisible sequence. If we have

log |a1a2 · · · · · · an| = Anl+1 + O(nl),

with l ≥ 1. Then we have (5) and (6).

In the case l > 1, the assumption of Theorem 3 is weaker than that of Theorem 2.
Consider the case l = 1. If we know more precise average asymptotic behavior, we can
proceed further. Assume that there exist constants ε, A and B such that

1

n
log |a1a2 · · · · · · an| = An + B + O(n−ε), (7)

where A and ε are positive. Then we easily see, for the strongly divisible sequence {an} it
holds that

log |a1a2 · · · · · · an|
log[a1, a2, . . . , an]

= ζ(2) + O(
E(n)

n2
), (8)

where

E(n) =
n∑

k=1

ϕ(k)− 3

π2
n2,

and ϕ(·) is Euler’s totient function. The error term of (8) is better than those of Theorem
2 and 3 (see [11], [8]) and is best possible. The estimate of type (7) is established in the
case of Lucas sequence in [6] by using the estimation of discrepancy of a sequence {nθ}∞n=1

where θ is a certain irrational number. See also [10].

§2. Sequences arising from an Elliptic Function.

In this section, we treat an example of strongly divisible sequences. Let L = 2ω1Z+2ω3Z
be a lattice in C. We choose ωi(i = 1, 3) so that τ = ω3/ω1 is in the upper half plane
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H= {z ∈C | Im(z) > 0}. Denote by σi(u) = σi(u,L) the Weierstrass sigma function:

σi(u,L) = u
∏

w∈L′
(1− u/w) exp(u/w + (1/2)(u/w)2),

where L′ = L − {0}. Put ψn(u) = σ(nu)/(σ(u)n2
). Then ψn(u) is an elliptic function and

satisfies the following recurrence relation for m ≥ n ≥ 1:

ψm+n(u)ψm−n(u) = ψm+1(u)ψm−1(u)ψn(u)2 − ψn+1(u)ψn−1(u)ψm(u)2.

This relation is crucial in calculating the n-th multiple value of Weierstrass p-function in
the classical elliptic function theory. Note that when u 6∈ L then ψ0(u) = 0 and ψ1(u) = 1.
Let {hn} be the sequence defined by the recurrence

hm+nhm−n = hm−1hm+1h
2
n − hn+1hn−1h

2
m (9)

and h0 = 0, h1 = 1. The systematical study of this sequence in the rational number field
was done by Ward in [12] and [13]. We quote some of his results in this section.

• Let hi(i = 2, 3, 4) be integers, h2h3 6= 0 and h2|h4. Then {hn} is well defined and
every hn is an integer.

Hereafter, we assume hi(i = 2, 3, 4) to be integers. We call this type of sequence {hn} as
an elliptic sequence.

• If h2h3h4h5 6= 0 then every hn 6= 0 for n ≥ 1.

• The sequence {hn} is divisible. Moreover if (h3, h4) = 1, then {hn} is strongly
divisible.

Now let ∆ be the discriminant of the elliptic curve corresponding to the lattice L. Un-
der the assumption h2h3 6= 0, we can determine the values g2(u,L), g3(u,L) and p(u,L)
formally in terms of h2, h3 and h4 by solving simultaneous equations:

ψi(u) = ψi(u,L) = hi,

for i = 2, 3 and 4. In fact, g2(L), g3(L) and p(u,L) are written in a form of rather
complicated rational function of h2, h3 and h4 in page 50 of [12]. Thus ∆ is given by

∆ = g2(L)3 − 27g3(L)2

= (−h15
2 h4 + h12

2 h3
3 − 3h10

2 h2
4 + 20h7

2h
3
3h4 − 3h5

2h
3
4 − 16h4

2h
6
3 − 8h2

2h
3
3h

2
4 − h4

4)/(h
8
2h

3
3).
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Note that the corresponding formula (19.3) of [12] is not valid. When ∆ 6= 0, then the
sequence {hn} does correspond to some elliptic curve. In other words, there exist a lattice
L with j-invariant g2(L)3/∆ and the value g2(L) and g3(L) fit together with the above
calculated ones. Thus, when h2h3 6= 0 and ∆ 6= 0, we can express hn = ψn(u) for every n.

Let {an}, {bn} be any complex valued sequences. We say that {an} is equivalent to {bn}
when there exists a non-zero constant C such that

an = Cn2−1bn.

We have

• Let {hn} be an elliptic sequence, h2h3 6= 0 and ∆ = 0. Then {hn} is equivalent either
to the sequence 0, 1, 2, . . . , n, . . . of non negative integers or to a sequence {Un} where
Un = (αn − βn)/(α − β), αβ = 1 and α + β is contained in a quadratic extension of
Q.

Notice that log[1, 2, . . . , n] is the Chebyshev’s psi function which is widely studied, and
the least common multiple of Lucas type sequence was treated in [2]. As we are interested
in the estimation of the least common multiple of a sequence, there will be no problem in
the case ∆ = 0. Taking into account of Theorem 2, we can state our problem as follows:

Problem. Let {hn} be an elliptic sequence with h2h3 6= 0 and ∆ 6= 0. Study the
asymptotic behavior of log |hn|.

§3. Asymptotic Behavior of Elliptic Sequences.

Let z = exp(π
√−1v), v = u/(2w1) and θ1(v) be the elliptic theta function:

θ1(v) =
√−1

∑

n∈Z
(−1)nq(n−1/2)2z2n−1,

where q = exp(π
√−1τ). Denote by θ

′0
1 the value of θ

′
1(v) at 0, that is,

θ
′0
1 = 2π

∑

n≥1

(−1)n−1(2n− 1)q(n−1/2)2 .

Then we have

Lemma 1. The function F(v) = π(Im(v))2/ Im(τ)− log |θ1(v)| is invariant under parallel
translations v → v +1 and v → v + τ . In other words, the value F(u/(2w1)) is determined
by u mod L.

Proof. This can be shown by the well known formulas:

7



θ1(v + 1) = −θ1(v)

and

θ1(v + τ) = − exp(−π
√−1(2v + τ))θ1(v). 2

Lemma 2. Let
A(u) = F(v) + log |θ′01 | − log |2w1|. (10)

Then we have

log |ψn(u)| = A(u)n2 − A(nu)

Proof. The function σ(u) is written in the form:

σ(u) = 2w1 exp(2η1w1v
2)θ1(v)/θ

′0
1 ,

with a constant η1 which satisfies

σ(u + 2w1) = −σ(u) exp(2η1(u + w1)).

Then we have

A(u) = Re(η1u
2/(2w1)) + π(Im(v))2/ Im(τ)− log |σ(u)|. (11)

This formula implies

n2 (A(u) + log |σ(u)|) = A(nu) + log |σ(nu)|.
This proves the lemma. 2

Lemma 3. Let |z| > 1 and q2mz2n 6= 1 for all m ∈Z. Denote by [x] the maximal integer
which does not exceed x. Then we have

log | ∏

m≥1

(1− q2mz2n)| = log |1− q2m0z2n| − (n log |z|)2/ log |q|+ O(n),

where m0 = [ −n log |z|/ log |q|+ 1/2 ].

Proof. We can show that |q2mz2n| < |q| for m > m0 and |q−2mz−2n| ≤ |q| for m < m0.
Thus we have
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log | ∏

m≥1

(1− q2mz2n)| = log |1− q2m0z2n|+ ∑
m<m0

log |q2mz2n|

+
∑

m<m0

log |1− q−2mz−2n|+ ∑
m>m0

log |1− q2mz2n|

= log |1− q2m0z2n|+ 2m0n log |z|+ m2
0 log |q|+ O(n)

= log |1− q2m0z2n| − (n log |z|)2/ log |q|+ O(n).

Lemma 4. For all positive integer n, let nu 6∈ L . Then A(nu) is bounded from below as
a function of n and we have

A(nu) = −min
m∈Z

log |1− e(mτ + nv)|+ O(n),

where e(z) = exp(2π
√−1z).

Proof. By (10) and Lemma 1, A(u) is determined by u mod L. Since θ1(v) is en-
tire, log |θ1(v)| is bounded from above in the fundamental parallelotope { v = ξ1 +
ξ3τ ∈C | ξ1, ξ3 ∈ [0,1] }. This shows that A(nu) is bounded from below as a function
of n. Changing the sign of v if necessary, we may assume that |z| > 1. Then by using
Lemma 3 and the infinite product representation of θ1(v):

θ1(v) = −√−1q1/4z
∏

m≥1

(1− qn)(1− q2mz2)(1− q2m−2z−2),

we have

log |θ1(nv)| = log |1− q2m0z2n| − (n log |z|)2/ log |q|+ ∑

m≥1

log |1− q2m−2z−2n|+ O(n).

Since |z| > 1, the third term of the right hand side is O(1). Thus we have

log |θ1(nv)| = log |1− q2m0z2n|+ π(Im(nv))2/ Im(τ) + O(n).

By (10), we proved the assertion. 2

Lemma 5. Let Θ be a positive number smaller than 1/2 and z be a complex number with
|1− z| < Θ. Then the inequality

k|1− z|/2 < |1− zk| < 2k|1− z|
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holds for any positive integer k ≤ (2Θ)−1.

Proof. We easily see that |(1− zk)/(1− z)| ≤ k max{1, |zk−1|}. Let r = z − 1 then

k log |1 + r| ≤ k log(1 + |r|) ≤ k|r| ≤ 1/2.

So |(1 + r)k−1| ≤ √
e · (1 + |r|)−1 ≤ √

e < 2. This shows the right inequality. So we have

|(1− zk)/(1− z)− k| ≤
k−1∑

i=1

|zi − 1| ≤ 2|z − 1|
k−1∑

i=1

i

= k(k − 1)|z − 1| < (k − 1)/2 < k/2 (12)

This implies that |(1− zk)/(1− z)| > k − k/2, which is the left inequality. 2

We are now able to prove A(nu) = O(n) for almost all n.

Lemma 6. Assume that there exists no integer n such that nu ∈ L. Consider a set
C = {n ∈N | A(nu) > Ln } for sufficiently large fixed L. Assume that C contains
infinitely many elements. We put C = {ni}∞i=1 with

n1 < n2 < n3 < · · · · · · .
Then there exists a positive constant T ≥ 2 and a sequence of positive integers {νk}k=1,2,...

which satisfies three conditions:

(a) νk+1 > exp(Tνk ),

(b) if νk ≤ ni < νk+1, then ni is a multiple of νk,

(c) Let ξ(ni) = −min
m∈Z log |1− e(mτ + niv)|, then ξ is a decreasing function of ni ∈ C

in each interval [νk, νk+1).

Proof. By Lemma 4, there exists L0 such that

A(nu) + min
m∈Z

log |1− e(mτ + nv)| ≤ L0n

for any n. Take a positive constant L greater than L0. Then we have

log |1− e(miτ + niv)| < −(L− L0)ni,

for a certain integer mi. This shows that

|1− e(miτ + niv)| < exp(−Lni).
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for a positive constant L(= L− L0). Define a new set

C ′ = {n ∈ N | ∃m ∈ Z, |1− e(mτ + nv)| < exp(−Ln)}.
Then the set C is a subset of C ′. Thus our aim is to verify the above three conditions
for the set C ′ for a sufficiently large L. More precisely, we shall show that there exist
two sequences of positive integers {νk}∞k=1 and {rk}∞k=1 so that C ′ is the set consisting of
elements of the form

ν1 < 2ν1 < · · · < r1ν1 < ν2 < 2ν2 < · · · < r2ν2 < ν3 < · · · · · · .
We proceed by induction. Let ν1 = n1, µ1 = m1 and r1 be the biggest integer so that

|1− e(k(µ1τ + ν1v))| < exp(−Lkν1) (13)

holds for any integer k ≤ r1. This inequality implies that

|1− e(µ1τ + ν1v)| < exp(−Lr1ν1).

In fact, by using Lemma 5 and induction, we can show

|1− e(µ1τ + ν1v)| < exp(−Lkν1).

for 1 ≤ k ≤ r1. The existence of r1 easily follows from this. By (13), we see that
ν1, 2ν1, . . . , r1ν1 ∈ C ′. It is shown that the minimum of |1 − e(mτ + kν1v)| is attained by
m = kµ1, if we take sufficiently large L. We can also show that ξ(kν1) is a decreasing
function. To see this, we note that the inequality (12) implies that

∣∣∣∣∣
1− e(k(µ1τ + ν1v))

1− e(µ1τ + ν1v)
− k

∣∣∣∣∣ <
k

2

and
1− e((k + 1)(µ1τ + ν1v))

1− e(µ1τ + ν1v)
− 1− e(k(µ1τ + ν1v))

1− e(µ1τ + ν1v)
= e(k(µ1τ + ν1v)).

The value e(k(µ1τ + ν1v)) is close enough to 1, which show that ξ(kν1) ≥ ξ((k + 1)ν1) for
k ≤ r1 − 1.

Now we assume that

ν1 < 2ν1 < · · · < r1ν1 < ν2 < 2ν2 < · · · < r2ν2 · · · · · · < νi < 2νi < · · · < riνi

are the elements of C ′ satisfying the following:

(a’) There exists a constant T ≥ 2 such that νj+1 > exp(Trjνj) for j = 1, 2, . . . , i− 1,
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(b’) ξ(lνj) is a decreasing function of l for l = 1, 2, . . . , rj,

(c’) There exist no other elements of C ′ smaller than νi.

(d’) rj is defined to be the biggest integer k so that |1 − e(k(µjτ + νjv))| < exp(−Lkνj)
holds for j = 1, 2, . . . , i.

Take the smallest element νi+1 of C ′−{lνj}j,l where j = 1, 2, . . . , i and l = 1, 2, . . . , rj. Let
µi+1 be the corresponding m. We see νi+1 > νi by (c’). At first, we shall show νi+1 > riνi.
If νi+1 ≤ riνi then we have

|1− e((µi+1 − µi)τ + (νi+1 − νi)v)|
≤ |1− e(µi+1τ + νi+1v)|+ |1− e(µiτ + νiv)|
≤ exp(−Lνi+1) + exp(−Lriνi) ≤ exp(−L(νi+1 − νi)),

which contradicts the definition of νi+1. Let E and F be integers such that νi+1 = Eriνi+F
and |F | ≤ riνi/2. Let G be a certain positive integer which will be chosen suitably later.
Then we have

riνi −G · F = (G · E + 1)riνi −G · νi+1.

Thus we have

|1− e (((G · E + 1)riµi −G · µi+1)τ + (riνi −G · F )v) |
≤ |1− e(G · (µi+1τ + νi+1v))|+ |1− e((G · E + 1)ri(µiτ + νiv))|
≤ 2G · exp(−Lνi+1) + 2(G · E + 1)ri exp(−Lriνi).

Here we used Lemma 5. (The conditions of G in Lemma 5 cause no problem in showing
the assertion.) Hence if we have the inequality

2G · exp(−Lνi+1) + 2(G · E + 1)ri exp(−Lriνi) < exp(−L(νiri −G · F ))

then νiri −G · F ∈ C ′. Firstly, we consider the case F > 0. Then we have

2G · exp(−Lνi+1) + 2(G · E + 1)ri exp(−Lriνi) < 2riG · (E + 2) exp(−Lriνi).

Thus if 2riG · (E + 2) < exp(LG ·F ) then νiri−G ·F ∈ C ′. Put G = 1 when riνi/4 ≤ |F |.
If riνi/4 > |F | then take G such that riνi/4 ≤ |G · F | ≤ 3riνi/4. In this case, we remark
that there are at least two ways to choose G. If E ≤ exp(Lriνi/5) then we have
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2riG · (E + 2) ≤ 3/2 · r2
i νi · (E + 2) ≤ exp(L · riνi/4) ≤ exp(LG · F )

for L ≥ 60. This shows νi|(F · G). Moreover, we see νi|F . In fact, when G 6= 1, we can
choose G with νi|F among the several possible candidates. Secondly, consider the case
F < 0. Note that |1 − exp(z)| = |1 − exp(−z)|. So, in the same way, we can prove νi|F ,
substituting νiri −G · F with G · F − νiri. Now, we consider the case νi|F , which includes
the case F = 0. Then we have νi+1 = Hνi for a positive integer H. When µi+1 = Hµi, by
using Lemma 5, if H ≤ exp(Lriνi)/2 then

|1− e(µi+1τ + νi+1v)| = |1− e(H · (µiτ + νiv))| ≥ H/2 · |1− e(µiτ + νiv)|

≥ H

4(ri + 1)
exp(−L(ri + 1)νi)

The last inequality follows from the definition of ri and Lemma 5. On the other hand

|1− e(µi+1τ + νi+1v)| ≤ exp(−L ·Hνi),

and H ≥ ri + 2, which gives a contradiction. This shows that H > exp(Lriνi)/2 and
νi+1 > exp(Triνi). If µi+1 6= Hµi , then there exists a positive constant c which depends
only on τ such that c < |1− e((µi+1 −Hµi)τ)|. But we have

|1− e((µi+1 −Hµi)τ)| ≤ |1− e(µi+1τ + νi+1v)|+ |1− e(H · (µiτ + νiv))|.
≤ exp(−Lνi+1) + |1− e(H · (µiτ + νiv))|

Choose L sufficiently large so that exp(−L) < c/2. Applying Lemma 5, we obtain H À
exp(Lriνi) and νi+1 > exp(Triνi). Let ri+1 be the integer defined by the property (d’) for
j = i + 1. Then, in a similar way as above, we can show that (b’) for j = i + 1 is valid.
This completes the proof. 2

Now we prove the average asymptotic behavior of elliptic sequence.

Lemma 7. Let {hn} be an elliptic sequence satisfying h2|h4, (h3, h4) = 1, ∆ 6= 0 and
h2h3h4h5 6= 0. Then we have

1

n
log |h1h2 · · · · · ·hn| = A(u)

3
n2 + O(n),

where u is a complex number determined by hn = ψn(u), and A(·) is defined by (10).

Proof. Let C be the set defined in Lemma 6. If C is finite, then by Lemma 4, we see that
A(nu) = O(n). Thus we have, by Lemma 2,

13



log |h1h2 · · · · · ·hn| =
n∑

i=1

(
A(u)i2 + O(i)

)

=
A(u)

3
n3 + O(n2).

This shows the assertion. Now we assume that C is an infinite set.

log |h1h2 · · · · · ·hn| =
n∑

i=1

A(u)i2 −
n∑

i=1

A(iu)

=
A(u)

3
n3 + O(n2)− ∑

i6∈C(n)

A(iu)− ∑

i∈C(n)

A(iu), (14)

where C(n) = {i ∈N | i ≤ n, n ∈ C}. By the definition of C and Lemma 4, we have

∑

i6∈C(n)

A(iu) = O

(
n∑

i=1

i

)
= O(n2). (15)

Without loss of generality, we may assume that n is an integer in the interval lνk ≤ n <
(l + 1)νk, l ≤ rk, where k, l are positive integers. Then we have

∑

i∈C(n)

A(iu) =
k−1∑

i=1

ri∑

j=1

ξ(jνi) +
l∑

j=1

ξ(jνk) + O(
n∑

i=1

i).

By Lemma 6, we have
k−1∑

i=1

ri∑

j=1

ξ(jνi) ≤
k−1∑

i=1

riξ(νi),

and
l∑

j=1

ξ(jνk) ≤ lξ(νk).

Since each hn(n ≥ 1) is a non zero integer, we see A(nu) ≤ A(u)n2. So, by Lemma 4, we
have A(nu) = O(n2). This implies that ξ(x) = O(x2). Thus

k−1∑

i=1

ri∑

j=1

ξ(jνi) = O

(
k−1∑

i=1

riν
2
i

)
= O

(
krk−1ν

2
k−1

)
,

and
l∑

j=1

ξ(jνi) = O(lν2
k) = O(n2).
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Using the inequality exp(Trk−1νk−1) < νk appearing in the proof of Lemma 6, we have

k − 1 ≤ νk−1 ≤ rk−1νk−1 ≤ log(νk)/T = log(n)/T.

This shows that
k−1∑

i=1

ri∑

j=1

ξ(jνi) = O(log3 n) = O(n2).

Summing up, we have shown

∑

i∈C(n)

A(iu) = O(n2).

By (14) and (15), we see the assertion. 2

Our last task is to show that A(u) > 0 for the elliptic sequence of Lemma 7.

Lemma 8. Let {hn} be an elliptic sequence satisfying h2|h4, (h3, h4) = 1. Then, for any
prime p, there exists n ≤ 2p + 1 such that p|hn.

Proof. This is the Theorem 5.1 of Ward [12]. Consider hn−1hn+1/h
2
n (mod p) for n =

2, 3, . . . , p + 1 and use Dirichlet’s box principle with (9). 2

Lemma 9. Let {hn} be an elliptic sequence satisfying h2|h4, ∆ 6= 0 and h2h3h4h5 6= 0.
Let u be the complex number determined by hn = ψn(u). Then we have A(u) > 0.

Proof. By Lemma 2, we have log |hn| = A(u)n2 − A(nu). If A(u) < 0, by Lemma 4,
log |hn| < 0 for a certain n, which contradicts the fact |hn| ≥ 1. This shows that A(u) ≥ 0.
Assume that A(u) = 0. Then log |hn| = −A(nu) holds for all n. By Lemma 4, there exists
a positive constant K such that |hn| ≤ K. Let p be a prime greater than K. Then Lemma
8 implies that p|hn for a certain n. This shows hn = 0. This is a contradiction. 2

Theorem 4. Let {hn} be an elliptic sequence satisfying h2|h4, (h3, h4) = 1, ∆ 6= 0 and
h2h3h4h5 6= 0. Then we have

log |h1h2 · · · · · ·hn|
log[h1, h2, . . . , hn]

= ζ(3) + O(
1

n
).

Proof. Combine Theorem 3, Lemma 7 and Lemma 9. 2

§4. Concluding Remarks.

In section 1, we proposed axiom (S) in order to treat the least common multiple of
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sequences. How can we generalize these situations? The asymptotic behaviour of the least
common multiples of sequences admits a rather big error term such as

log[a1, a2, . . . , an] = (main term) + O(nl),

to obtain our type of results. It seems that the axiom (S) is too strict. We want a weaker
axiom to obtain this asymptotic formula without using (2).

It seems natural to expect A(nu) = O(n). In other words, the estimation log |ψn(u)| =
A(u)n2 + O(n) for every n is expected. (However, it would not cause any improvement of
our asymptotic formulas.) In the case of sequences of Lucas type, this individual estimation
is established in the light of Baker’s estimation of the summation of logarithm of algebraic
numbers. The analogue of this for our case is needed. Up to now, the author does not know
any result of this type. However if it exists, the above argument has an independent merit.
To derive the average asymptotic behavior of this sequence, we do not use the fact that
the corresponding elliptic curve is defined over rational number field. Thus our argument,
elementary but a little complicated, might be used in other problems.

There exist examples of elliptic sequences with A(u) = 0, which stimulated some interest
to the author. Let (h2, h3, h4) = (1, 1, 1) or (1,1,0). In this case we see ∆ 6= 0 and hκ = 0 for
a certain κ. Take the smallest such κ(≥ 4). Choose u such that hn = ψn(u). Then u is a κ-
division point of the corresponding elliptic curve. This shows that hnκ = 0 for every n ∈N,
hn 6= 0 for κ 6 |n and hn = hn+κ for every n. The formula log |ψn(u)| = A(u)n2−A(nu) still
holds for κ 6 |n. Using the argument of Lemma 9, we have A(u) ≥ 0. If A(u) > 0 then, by
Lemma 6, ψn(u) = hn is not bounded, which contradicts the periodicity of hn. This shows
that A(u) = 0, which gives a relation:

log |σ(u)| = Re(η1u
2/(2w1)) + π(Im(u/(2w1)))

2/ Im(τ),

by the use of (11).
Some numerical examples are found in the following Table 1.
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Table 1.

(h2, h3, h4) = (1, 1,−1)
p = 1/3

g2 = 4/3
g3 = −35/27
∆ = −43
J = −64/1161
τ = −1/2 + 1.002926948197305394966

√−1
w1 = 0 + 1.363182418170433596392

√−1
u = 1.531551051899213180325

A(u) = 0.031408253543743824633
(h2, h3, h4) = (1, 2, 1)

p = 3/4
g2 = 19/4
g3 = −23/8
∆ = −116
J = −6859/7424
τ = −1/2 + 1.228990832129246397562

√−1
w1 = 0 + 1.111804814975135231767

√−1
u = 1.301268905063793834665

A(u) = 0.084840615679859699533
(h2, h3, h4) = (1, 3, 1)

p = 28/27
g2 = 2812/243
g3 = −168083/19683
∆ = −11321/27
J = −22235451328/6016443561
τ = −1/2 + 1.411429696528812658305

√−1
w1 = 0 + 0.907350665488871173676

√−1
u = 1.252539774071157056878

A(u) = 0.136695663405057918491
(h2, h3, h4) = (1,−1, 1)

p = 0
g2 = 4
g3 = −1
∆ = 37
J = 64/37
τ = 0 + 1.221127360764627252496

√−1
w1 = 0 + 1.225694690993395030427

√−1
u = −0.92959271528539567440519

+1.22569469099339503042711
√−1

A(u) = 0.025555704119984420117
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(h2, h3, h4) = (2, 1, 4)
p = 41/6

g2 = 1573/3
g3 = −62387/27
∆ = −676
J = −23030293/108
τ = −1/2 + 3.139317204766964341216

√−1
w1 = 0 + 0.352738304847112422947

√−1
u = 0.660057981718722555872

A(u) = 0.126242626431163986909
(h2, h3, h4) = (3, 5, 6)

p = 821/300
g2 = 425041/7500
g3 = −277119161/3375000
∆ = −2129/125
J = −76787844018343921/7185375000000
τ = −1/2 + 2.662903182751486527437

√−1
w1 = 0 + 0.615192114179878726930

√−1
u = 0.759101080162039522511

A(u) = 0.162312085677860900909
(h2, h3, h4) = (1, 1, 0)

p = 5/12
g2 = 1/12
g3 = −161/216
∆ = −15
J = −1/25920
τ = −1/2 + 0.877437661348222505688

√−1
w1 = 0 + 1.596242222131783510148

√−1
u = 1.400603042332602023180

A(u) = 0.000000000000000000000
(h2, h3, h4) = (1, 1, 1)

p = 2/3
g2 = 4/3
g3 = −19/27
∆ = −11
J = −64/297
τ = −1/2 + 1.087533286862971250700

√−1
w1 = 0 + 1.458816616938495229330

√−1
u = 1.269209304279553421688

A(u) = 0.000000000000000000000
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