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Salem numbers and uniform distribution modulo 1

By SHIGEKI AKIYAMA (Niigata) and YOSHIO TANIGAWA (Nagoya)

Abstract. For a Salem number α of degree d, the distridution of fractional
parts of αn(n = 1, 2, . . . ) is studied. By giving explicit inequalities, it is shown to
be ‘exponentially’ close to uniform distribution when d is large.

1. Introduction

Uniform distribution of sequences of exponential order growth is an
attractive and mysterious subject. Koksma’s Theorem assures that the
sequence (αn) (n = 0, 1, . . .) is uniformly distributed modulo 1 for almost
all α > 1. See [6]. To find an example of such α has been an open problem
for a long time. In [7], M. B. Levin constructed an α > 1 with more strong
distribution properties. His method gives us a way to approximate such α

step by step. (See also [4, pp. 118–130].) However, no ‘concrete’ examples
of such α are known to date. For instance, it is still an open problem
whether (en) and ((3/2)n) are dense or not in R/Z (c.f. Beukers [2]).

On the other hand, one can easily construct α > 1 that (αn) is not
uniformly distributed modulo 1. A Pisot number gives us such an example.
We recall the definition of Pisot and Salem numbers. A Pisot number is
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a real algebraic integer greater than 1 whose conjugates other than itself
have modulus less than 1. A Salem number is a real algebraic integer
greater than 1 whose conjugates other than itself have modulus less than
or equal to 1 and at least one conjugate has modulus equal to 1. It is shown
that (αn) tends to 0 in R/Z when α is a Pisot number. If α is a Salem
number, (αn) is dense in R/Z but not uniformly distributed modulo 1. (See
[1, pp. 87–89].) Moreover, Salem numbers are the only known ‘concrete’
numbers whose powers are dense in R/Z.

In this short note, we will consider a quantitative problem:

How far is the sequence (αn) from the uniform
distribution for a Salem number α?

Let (an), n = 0, 1, . . . be a real sequence and I be an interval in [0, 1].
Define a counting function AN ((an), I) by the cardinality of n ∈ Z∩ [1, N ]
such that {an}, the fractional part of an, lie in I. We shall show

Theorem 1. Let α be a Salem number of degree greater than or equal

to 8. Then limN→∞ 1
N AN ((αn), I) exists and satisfies

∣∣∣∣ lim
N→∞

1
N

AN ((αn), I)− |I|
∣∣∣∣ ≤ 2ζ

(
deg α− 2

4

)
(2π)1−

deg α
2 |I|,

where ζ(s) is the Riemann zeta function, deg α is the degree of α over Q
and |I| is the length of I.

Theorem 2. Let α be a Salem number of degree 4 or 6. Then

limN→∞ 1
N AN ((αn), I) exists and satisfies

∣∣∣∣ lim
N→∞

1
N

AN ((αn), I)− |I|
∣∣∣∣ ≤ 4π−

3
2

√
|I| for deg α = 4,

and
∣∣∣∣ lim
N→∞

1
N

AN ((αn), I)− |I|
∣∣∣∣ ≤

|I|
2π2

(
log

1
|I| + 1 + |I|

)
for deg α = 6.

These theorems show that the sequence (αn) is quite ‘near’ to uni-
formly distributed sequences when the degree of a Salem number α is
large.
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2. Proof of Theorem 1

Let α be a Salem number of degree s. From the definition of Salem
numbers, s is an even integer not less than 4, whose conjugates are

α, α−1, α(1), . . . , α(s−2)

with complex α(j) of modulus 1 [1, p. 85]. Assume that α(j+r) = α(j) for
j = 1, . . . , r with r = s−2

2 . Put

α(j) = exp(2πiθj) (0 < θj < 1) (1)

for 1 ≤ j ≤ r.

Lemma 1. Let θj be the numbers defined by (1). Then 1, θ1, . . . , θr

are linearly independent over Q.

Proof. See for example [1, pp. 88–89]. ¤

From this lemma, {(mθ1,mθ2, . . . , mθr)}∞m=1 is uniformly distributed
mod Zr. Hence for any Riemannian integrable function f(x) on (R/Z)r,
the limit

lim
N→∞

1
N

N∑

m=1

f(mθ1, . . . , mθr)

exists and is equal to
∫

(R/Z)r

f(x1, . . . , xr)dx1 · · ·xr.

Let I = [a, b] be an interval in [0, 1] and χI the characteristic function
of I. We extend χI as a periodic function on R by a period 1. Since
AN ((αn), I) =

∑N
m=1 χI (α

m) and

αm + α−m + 2
r∑

j=1

cos(2πmθj) ∈ Z,

we study the limit of

SN (α, I) :=
1
N

N∑

m=1

χI

(
−α−m − 2

r∑

j=1

cos(2πmθj)
)

(2)

as N →∞.
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For that purpose, we recall the Selberg polynomial which approximates
the characteristic function of an interval. Let ∆K(x) be the Fejér’s kernel
defined by

∆K(x) = 1 +
∑

|k|≤K
k 6=0

(
1− |k|

K

)
e2πikx,

and VK(x) be the Vaaler’s polynomial:

VK(x) =
1

K + 1

K∑

k=1

f
( k

K + 1

)
sin(2πkx)

where f(u) = −(1−u) cot(πu)− 1
π . It is clear that for any η (0 < η ≤ 1/2),

|f(u)| ≤





πη

sinπη

1
πu

+
1
π

for 0 < u ≤ η

1− η

sinπ(1− η)
+

1
π

for η < u < 1.

(3)

Furthermore let BK(x) denote the Beurling polynomial:

BK(x) = VK(x) +
1

2(K + 1)
∆K+1(x). (4)

Take an interval J = [a, b] in [0, 1]. Then Selberg polynomials for the
interval J are

S+
K(x) = b− a + BK(x− b) + BK(a− x) (5)

and

S−K(x) = b− a−BK(b− x)−BK(x− a). (6)

These functions S±K(x) are trigonometric polynomials of degree at most K

and satisfy

S−K(x) ≤ χJ (x) ≤ S+
K(x). (7)

See [8] for further properties of Selberg polynomials.
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Lemma 2. Let k be a positive integer. Then we have

|J0(2πk)| ≤ 1
π
√

2k
. (8)

Proof. Let H
(j)
ν (z) (j = 1, 2) be the Hankel functions. Asymptotic

expansions of H
(j)
ν (z) are given by

H(1)
ν (z) =

(
2
πz

) 1
2

ei(z− νπ
2
−π

4
)

{
p−1∑

m=0

(−1)m(ν,m)
(2iz)m

+ R(1)
p (z)

}

and

H(2)
ν (z) =

(
2
πz

) 1
2

e−i(z− νπ
2
−π

4
)

{
p−1∑

m=0

(ν,m)
(2iz)m

+ R(2)
p (z)

}
,

where (ν, m) = (4ν2−1)(4ν2−32)···(4ν2−(2m−1)2)
22mm!

, (ν, 0) = 1 and R
(j)
p (z) (j =

1, 2) are remainder terms ([9, pp. 197–198]). Taking ν = 0, p = 2, we get

Jν(z) =
1
2

(
H(1)

ν (2πk) + H(2)
ν (2πk)

)

=
(

2
πz

) 1
2
{

cos
(
z− π

4

)
+

1
8z

sin
(
z− π

4

)
+

1
2

(
R

(1)
2 (z) +R

(2)
2 (z)

)}
.

It is easily seen that for j = 1, 2

|R(j)
2 (z)| ≤ 9

128z2
for z > 0

(see the integral representation of R
(j)
p (z) in [9, p. 197]). Hence

J0(2πk) =
1

π
√

k

(
1√
2
− 1

16
√

2πk
+ R

)

with

|R| ≤ 1
2

(
|R(1)

2 (2πk)|+ |R(2)
2 (2πk)|

)
≤ 9

512π2k2

≤ 1
16
√

2πk
,

we get the assertion of the lemma. ¤
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Lemma 3. Take a and b in [0, 1] with a < b and let J = (a, b), [a, b],
(a, b] or [a, b). Let r be an integer not less than 3. Then we have

∣∣∣∣∣∣

∫

(R/Z)r

χJ

(
−2

r∑

j=1

cos(2πxj)
)
dx1 · · · dxr − |J |

∣∣∣∣∣∣
≤ 2ζ

(r

2

)
(2π)−r|J |. (9)

Proof. Hereafter we write z = 2
∑r

j=1 cos(2πxj) and W = (R/Z)r

for simplicity. By (7), we evaluate the integrals:
∫

W

{
BK(∓(z + b)) + BK(±(z + a))

}
dx1 · · · dxr. (10)

Substituting (4), the definition of BK(x), and using the integral formula

∫

W
e±2πik(z+a)dx1 · · · dxr = e±2πika

(∫ 1

0
e4πik cos 2πxdx

)r

= e±2πikaJ0(4πk)r,

(see [5, p. 81]), we have
∫

W
BK(z + a)dx1 · · · dxr =

∫

W

{
VK(z + a) +

∆K+1(z + a)
2(K + 1)

}
dx1 · · · dxr

=
1

K + 1

K∑

k=1

f

(
k

K + 1

)
sin(2πka)J0(4πk)r

+
1

2(K + 1)





1 +
∑

|k|≤K+1
k 6=0

(
1− |k|

K + 1

)
e2πikaJ0(4πk)r





. (11)

From (8) the absolute value of the last term on the right hand side of (11)
is estimated as

≤ 1
2(K + 1)

{
1 + 2(2π)−r

K+1∑

k=1

(
1− k

K + 1

)
k−r/2

}

≤ 1
2(K + 1)

{
1 + 2(2π)−rζ

(r

2

)}
≤ 1

K
.
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Hence the integral of BK(z + a) is given by
∫

W
BK(z + a)dx1 · · · dxr

=
1

K + 1

K∑

k=1

f

(
k

K + 1

)
sin(2πka)J0(4πk)r + G1(a)

with the bound |G1(a)| ≤ 1
K . The integral of BK(−z − b) is given in the

same way,
∫

W
BK(−z − b)dx1 · · · dxr

= − 1
K + 1

K∑

k=1

f

(
k

K + 1

)
sin(2πkb)J0(4πk)r + G2(b)

with the same upper bound |G2(b)| ≤ 1
K . Adding the above expressions

we have
∣∣∣∣
∫

W

{
BK(−z − b) + BK(z + a)

}
dx1 · · · dxr

∣∣∣∣

≤
∣∣∣∣

1
K + 1

K∑

k=1

f
( k

K + 1

)
(sin 2πka− sin 2πkb)J0(4πk)r

∣∣∣∣ +
2
K

≤ 2
K + 1

K∑

k=1

∣∣∣f
( k

K + 1

)∣∣∣ | sinπk(a− b)|(2π)−rk−
r
2 +

2
K

≤ (2π)1−r

K + 1
(b− a)

K∑

k=1

∣∣∣f
( k

K + 1

)∣∣∣k1− r
2 +

2
K

.

Now we estimate the sum in the above equation. Let ε be a small
positive number, and take η < 1

2 to be a small positive number which
satisfies πη

sin πη < 1 + ε. Dividing the sum into two parts at
[
η(K + 1)

]
and

using (3), we have

1
K + 1

K∑

k=1

∣∣∣f
( k

K + 1

)∣∣∣k1− r
2 ≤ 1

K + 1

[η(K+1)]∑

k=1

(
πη

sinπη

K + 1
πk

+
1
π

)
k1− r

2
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+
1

K +1

(
1− η

sinπ(1− η)
+

1
π

) K∑

k=[η(K+1)]+1

k1− r
2

≤ 1
π

(1 + ε)ζ
(r

2

)
+ O

(
1√
K

)
,

where the implied constant in the last equation does not depend on K.
Therefore ∣∣∣∣

∫

W

{
BK(−z − b) + BK(z + a)

}
dx1 · · · dxr

∣∣∣∣

≤ 2(2π)−r(b− a)(1 + ε)ζ
(r

2

)
+ O

(
1√
K

)
.

In the same manner we have∣∣∣∣
∫

W

{
BK(z + b) + BK(−z − a)

}
dx1 · · · dxr

∣∣∣∣

≤ 2(2π)−r(b− a)(1 + ε)ζ
(r

2

)
+ O

(
1√
K

)
.

Thus from (5), (6) and (7) we get the upper bound of the left hand
side of (9):

∣∣∣∣
∫

W
χJ

(
−2

r∑

j=1

cos(2πxj)
)
dx1 · · · dxr − |J |

∣∣∣∣

≤ 2(1 + ε)ζ
(r

2

)
(2π)−r|J |+ O

(
1√
K

)
.

Now we let K →∞, as ε is arbitrary, we get the assertion of the lemma. ¤

Proof of Theorem 1. Now we study limN→∞ SN (α, I) of (2). Let
(xn) and (yn) be real sequences with yn → 0. Then it is easily seen from [6],
Chapter 1, Theorem 7.3 that if (xn) has a continuous asymptotic density
function, then (xn+yn) also does and their density functions are the same.
Thus it is able to ignore the term α−m in (2).

Our task is to consider the integral:
∫

W
χI

(
−2

r∑

j=1

cos(2πxj)
)
dx1 · · · dxr.

Applying (9) to the interval I, we get the assertion of Theorem 1. ¤
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3. Proof of Theorem 2

Let us follow the proof of Theorem 1 with r = 1, 2. In this case, we
have

Y :=
∣∣∣∣
∫

W

{
BK(−z − b) + BK(z + a)

}
dx1 · · · dxr

∣∣∣∣

=
2(2π)−r

K + 1

K∑

k=1

∣∣∣f
( k

K + 1

)∣∣∣ | sinπk(a− b)|k−r/2 + O(K−1/2). (12)

Let ε be a small positive number and take a small positive η such that
πη/(sinπη)<1+ε and a large integer K such that 1/(b−a) <η(K+1) <K.
We also introduce another parameter 0 < v < 1 which is chosen later.
Divide the summation in (12) into three parts

2(2π)−r

K + 1





∑

k≤ v
b−a

+
∑

v
b−a

<k≤η(K+1)

+
∑

η(K+1)<k≤K



 =: S1 + S2 + S3.

If b− a ≤ v, using | sinπk(b− a)| ≤ πk(b− a) and (3), we get

S1 ≤





(1 + ε)(b− a)
π

(
2
√

v

b− a
− 1

)
+ O

(
1
K

)
r = 1,

(1 + ε)(b− a)
2π2

(
log

v

b− a
+ 1

)
+ O

(
1
K

)
r = 2,

while if b − a > v, S1 is trivially zero. If b − a ≤ v, the trivial bound
| sinπk(b− a)| ≤ 1 implies, for r = 1, 2,

S2 ≤ 4(1 + ε)
(2π)r+1

(
b− a

v

) r
2
(

2
r

+
b− a

v

)
+ O(K−1/2),

while if b− a > v,

S2 ≤ 4(1 + ε)
(2π)r+1

ζ
(
1 +

r

2

)
+ O(K−1/2).

Finally we have S3 = O(K−1/2) for r = 1, 2. The implied constants do not
depend on K. Now we let K →∞.
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In the case r = 1 we get

Y ≤





(1 + ε)
√

b− a

π

{
2

(√
v +

1
π
√

v

)
−√b− a +

b− a

πv
3
2

}
b− a ≤ v,

1 + ε

π2
ζ

(
3
2

)
b− a > v.

Taking v = 1/π, it follows that

Y ≤ 4π−
3
2 (1 + ε)

√
b− a.

For r = 2, we have

Y ≤





(1 + ε)(b− a)
2π2

(
log

1
b− a

+ 1 +
1
πv

+ log v +
b− a

πv2

)
b− a ≤ v,

1 + ε

2π3
ζ(2) b− a > v.

Now taking v = 1/
√

π, we get

Y ≤ (1 + ε)(b− a)
2π2

(
log

1
b− a

+ 1 + (b− a)
)

.

The same estimates are valid for
∫

W

{
BK(z + b) + BK(−z − a)

}
dx1 · · · dxr

with r = 1, 2. Since ε is chosen arbitrarily, we obtain Theorem 2.
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4. Examples

To illustrate the result, we give examples of distributions for Salem
numbers of degree 4, 6 and 8. The interval [0, 1] is divided into 100 pieces.
We computed the fractional part of αn for 1 ≤ n ≤ 200000, and counted
the number of n so that the fractional part of αn falls into each subintervals.
The vertical axis indicates the number of such n.

0.2 0.4 0.6 0.8 1

2000

4000

6000

8000

10000

Figure 1. Salem number for x4 − x3 − x2 − x + 1 = 0

0.2 0.4 0.6 0.8 1

1000

2000

3000

4000

Figure 2. Salem number for x6 − x5 − x4 + x3 − x2 − x + 1 = 0
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0.2 0.4 0.6 0.8 1

1000

2000

3000

4000

Figure 3. Salem number for x8 − 2x7 + x6 − x4 + x2 − 2x + 1 = 0
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[5] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Tran-

scendental Functions, Vol. 2, McGraw-Hill, New York, 1953.

[6] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and

Applied Math., John Wiley & Sons, 1974.

[7] M. B. Levin, On the complete uniform distribution of the fractional parts of the

exponential function, Trudy Sem. Petrovsk., no. 7 (1981), 245–256 (in Russian).



Salem numbers and uniform distribution modulo 1 341

[8] H. L. Montgomery, Ten lectures on the interface between analytic number theory

and harmonic analysis, Conference Board of the Math. Sci., Vol. 84, AMS, 1994.

[9] G. N. Watson, A Treatise on the Theory of Bessel Functions, (CML edition),

Cambridge University Press, New York, 1995.

SHIGEKI AKIYAMA

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

NIIGATA UNIVERSITY

IKARASHI 2-8050, NIIGATA 950-2181

JAPAN

E-mail: akiyama@math.sc.niigata-u.ac.jp

YOSHIO TANIGAWA

GRADUATE SCHOOL OF MATHEMATICS

NAGOYA UNIVERSITY

CHIKUSA-KU, NAGOYA 464-8602

JAPAN

E-mail: tanigawa@math.nagoya-u.ac.jp

(Received November 15, 2002; revised April 14, 2003)


