Salem numbers and uniform distribution modulo 1

By SHIGEKI AKIYAMA (Niigata) and YOSHIO TANIGAWA (Nagoya)

Abstract

For a Salem number α of degree d, the distridution of fractional parts of $\alpha^{n}(n=1,2, \ldots)$ is studied. By giving explicit inequalities, it is shown to be 'exponentially' close to uniform distribution when d is large.

1. Introduction

Uniform distribution of sequences of exponential order growth is an attractive and mysterious subject. Koksma's Theorem assures that the sequence $\left(\alpha^{n}\right)(n=0,1, \ldots)$ is uniformly distributed modulo 1 for almost all $\alpha>1$. See [6]. To find an example of such α has been an open problem for a long time. In [7], M. B. Levin constructed an $\alpha>1$ with more strong distribution properties. His method gives us a way to approximate such α step by step. (See also [4, pp. 118-130].) However, no 'concrete' examples of such α are known to date. For instance, it is still an open problem whether $\left(e^{n}\right)$ and $\left((3 / 2)^{n}\right)$ are dense or not in \mathbb{R} / \mathbb{Z} (c.f. Beukers [2]).

On the other hand, one can easily construct $\alpha>1$ that $\left(\alpha^{n}\right)$ is not uniformly distributed modulo 1. A Pisot number gives us such an example. We recall the definition of Pisot and Salem numbers. A Pisot number is

[^0]a real algebraic integer greater than 1 whose conjugates other than itself have modulus less than 1. A Salem number is a real algebraic integer greater than 1 whose conjugates other than itself have modulus less than or equal to 1 and at least one conjugate has modulus equal to 1 . It is shown that (α^{n}) tends to 0 in \mathbb{R} / \mathbb{Z} when α is a Pisot number. If α is a Salem number, (α^{n}) is dense in \mathbb{R} / \mathbb{Z} but not uniformly distributed modulo 1 . (See [1, pp. 87-89].) Moreover, Salem numbers are the only known 'concrete' numbers whose powers are dense in \mathbb{R} / \mathbb{Z}.

In this short note, we will consider a quantitative problem:

> How far is the sequence $\left(\alpha^{n}\right)$ from the uniform distribution for a Salem number α ?

Let $\left(a_{n}\right), n=0,1, \ldots$ be a real sequence and I be an interval in $[0,1]$. Define a counting function $A_{N}\left(\left(a_{n}\right), I\right)$ by the cardinality of $n \in \mathbb{Z} \cap[1, N]$ such that $\left\{a_{n}\right\}$, the fractional part of a_{n}, lie in I. We shall show

Theorem 1. Let α be a Salem number of degree greater than or equal to 8. Then $\lim _{N \rightarrow \infty} \frac{1}{N} A_{N}\left(\left(\alpha^{n}\right), I\right)$ exists and satisfies

$$
\left|\lim _{N \rightarrow \infty} \frac{1}{N} A_{N}\left(\left(\alpha^{n}\right), I\right)-|I|\right| \leq 2 \zeta\left(\frac{\operatorname{deg} \alpha-2}{4}\right)(2 \pi)^{1-\frac{\operatorname{deg} \alpha}{2}}|I|,
$$

where $\zeta(s)$ is the Riemann zeta function, $\operatorname{deg} \alpha$ is the degree of α over \mathbb{Q} and $|I|$ is the length of I.

Theorem 2. Let α be a Salem number of degree 4 or 6 . Then $\lim _{N \rightarrow \infty} \frac{1}{N} A_{N}\left(\left(\alpha^{n}\right), I\right)$ exists and satisfies

$$
\left|\lim _{N \rightarrow \infty} \frac{1}{N} A_{N}\left(\left(\alpha^{n}\right), I\right)-|I|\right| \leq 4 \pi^{-\frac{3}{2}} \sqrt{|I|} \quad \text { for } \operatorname{deg} \alpha=4,
$$

and

$$
\left|\lim _{N \rightarrow \infty} \frac{1}{N} A_{N}\left(\left(\alpha^{n}\right), I\right)-|I|\right| \leq \frac{|I|}{2 \pi^{2}}\left(\log \frac{1}{|I|}+1+|I|\right) \quad \text { for } \operatorname{deg} \alpha=6 \text {. }
$$

These theorems show that the sequence $\left(\alpha^{n}\right)$ is quite 'near' to uniformly distributed sequences when the degree of a Salem number α is large.

2. Proof of Theorem 1

Let α be a Salem number of degree s. From the definition of Salem numbers, s is an even integer not less than 4 , whose conjugates are

$$
\alpha, \alpha^{-1}, \alpha^{(1)}, \ldots, \alpha^{(s-2)}
$$

with complex $\alpha^{(j)}$ of modulus 1 [1, p. 85]. Assume that $\alpha^{(j+r)}=\overline{\alpha^{(j)}}$ for $j=1, \ldots, r$ with $r=\frac{s-2}{2}$. Put

$$
\begin{equation*}
\alpha^{(j)}=\exp \left(2 \pi i \theta_{j}\right) \quad\left(0<\theta_{j}<1\right) \tag{1}
\end{equation*}
$$

for $1 \leq j \leq r$.
Lemma 1. Let θ_{j} be the numbers defined by (1). Then $1, \theta_{1}, \ldots, \theta_{r}$ are linearly independent over \mathbb{Q}.

Proof. See for example [1, pp. 88-89].
From this lemma, $\left\{\left(m \theta_{1}, m \theta_{2}, \ldots, m \theta_{r}\right)\right\}_{m=1}^{\infty}$ is uniformly distributed $\bmod \mathbb{Z}^{r}$. Hence for any Riemannian integrable function $f(x)$ on $(\mathbb{R} / \mathbb{Z})^{r}$, the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{m=1}^{N} f\left(m \theta_{1}, \ldots, m \theta_{r}\right)
$$

exists and is equal to

$$
\int_{(\mathbb{R} / \mathbb{Z})^{r}} f\left(x_{1}, \ldots, x_{r}\right) d x_{1} \cdots x_{r}
$$

Let $I=[a, b]$ be an interval in $[0,1]$ and χ_{I} the characteristic function of I. We extend χ_{I} as a periodic function on \mathbb{R} by a period 1. Since $A_{N}\left(\left(\alpha^{n}\right), I\right)=\sum_{m=1}^{N} \chi_{I}\left(\alpha^{m}\right)$ and

$$
\alpha^{m}+\alpha^{-m}+2 \sum_{j=1}^{r} \cos \left(2 \pi m \theta_{j}\right) \in \mathbb{Z}
$$

we study the limit of

$$
\begin{equation*}
S_{N}(\alpha, I):=\frac{1}{N} \sum_{m=1}^{N} \chi_{I}\left(-\alpha^{-m}-2 \sum_{j=1}^{r} \cos \left(2 \pi m \theta_{j}\right)\right) \tag{2}
\end{equation*}
$$

as $N \rightarrow \infty$.

For that purpose, we recall the Selberg polynomial which approximates the characteristic function of an interval. Let $\Delta_{K}(x)$ be the Fejér's kernel defined by

$$
\Delta_{K}(x)=1+\sum_{\substack{|k| \leq K \\ k \neq 0}}\left(1-\frac{|k|}{K}\right) e^{2 \pi i k x}
$$

and $V_{K}(x)$ be the Vaaler's polynomial:

$$
V_{K}(x)=\frac{1}{K+1} \sum_{k=1}^{K} f\left(\frac{k}{K+1}\right) \sin (2 \pi k x)
$$

where $f(u)=-(1-u) \cot (\pi u)-\frac{1}{\pi}$. It is clear that for any $\eta(0<\eta \leq 1 / 2)$,

$$
|f(u)| \leq \begin{cases}\frac{\pi \eta}{\sin \pi \eta} \frac{1}{\pi u}+\frac{1}{\pi} & \text { for } 0<u \leq \eta \tag{3}\\ \frac{1-\eta}{\sin \pi(1-\eta)}+\frac{1}{\pi} & \text { for } \eta<u<1\end{cases}
$$

Furthermore let $B_{K}(x)$ denote the Beurling polynomial:

$$
\begin{equation*}
B_{K}(x)=V_{K}(x)+\frac{1}{2(K+1)} \Delta_{K+1}(x) \tag{4}
\end{equation*}
$$

Take an interval $J=[a, b]$ in $[0,1]$. Then Selberg polynomials for the interval J are

$$
\begin{equation*}
S_{K}^{+}(x)=b-a+B_{K}(x-b)+B_{K}(a-x) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{K}^{-}(x)=b-a-B_{K}(b-x)-B_{K}(x-a) \tag{6}
\end{equation*}
$$

These functions $S_{K}^{ \pm}(x)$ are trigonometric polynomials of degree at most K and satisfy

$$
\begin{equation*}
S_{K}^{-}(x) \leq \chi_{J}(x) \leq S_{K}^{+}(x) \tag{7}
\end{equation*}
$$

See [8] for further properties of Selberg polynomials.

Lemma 2. Let k be a positive integer. Then we have

$$
\begin{equation*}
\left|J_{0}(2 \pi k)\right| \leq \frac{1}{\pi \sqrt{2 k}} \tag{8}
\end{equation*}
$$

Proof. Let $H_{\nu}^{(j)}(z)(j=1,2)$ be the Hankel functions. Asymptotic expansions of $H_{\nu}^{(j)}(z)$ are given by

$$
H_{\nu}^{(1)}(z)=\left(\frac{2}{\pi z}\right)^{\frac{1}{2}} e^{i\left(z-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)}\left\{\sum_{m=0}^{p-1} \frac{(-1)^{m}(\nu, m)}{(2 i z)^{m}}+R_{p}^{(1)}(z)\right\}
$$

and

$$
H_{\nu}^{(2)}(z)=\left(\frac{2}{\pi z}\right)^{\frac{1}{2}} e^{-i\left(z-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)}\left\{\sum_{m=0}^{p-1} \frac{(\nu, m)}{(2 i z)^{m}}+R_{p}^{(2)}(z)\right\}
$$

where $(\nu, m)=\frac{\left(4 \nu^{2}-1\right)\left(4 \nu^{2}-3^{2}\right) \ldots\left(4 \nu^{2}-(2 m-1)^{2}\right)}{2^{2 m} m!},(\nu, 0)=1$ and $R_{p}^{(j)}(z)(j=$ $1,2)$ are remainder terms ([9, pp. 197-198]). Taking $\nu=0, p=2$, we get

$$
\begin{aligned}
J_{\nu}(z) & =\frac{1}{2}\left(H_{\nu}^{(1)}(2 \pi k)+H_{\nu}^{(2)}(2 \pi k)\right) \\
& =\left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\left\{\cos \left(z-\frac{\pi}{4}\right)+\frac{1}{8 z} \sin \left(z-\frac{\pi}{4}\right)+\frac{1}{2}\left(R_{2}^{(1)}(z)+R_{2}^{(2)}(z)\right)\right\} .
\end{aligned}
$$

It is easily seen that for $j=1,2$

$$
\left|R_{2}^{(j)}(z)\right| \leq \frac{9}{128 z^{2}} \quad \text { for } z>0
$$

(see the integral representation of $R_{p}^{(j)}(z)$ in [9, p. 197]). Hence

$$
J_{0}(2 \pi k)=\frac{1}{\pi \sqrt{k}}\left(\frac{1}{\sqrt{2}}-\frac{1}{16 \sqrt{2} \pi k}+R\right)
$$

with

$$
\begin{aligned}
|R| & \leq \frac{1}{2}\left(\left|R_{2}^{(1)}(2 \pi k)\right|+\left|R_{2}^{(2)}(2 \pi k)\right|\right) \leq \frac{9}{512 \pi^{2} k^{2}} \\
& \leq \frac{1}{16 \sqrt{2} \pi k}
\end{aligned}
$$

we get the assertion of the lemma.

Lemma 3. Take a and b in $[0,1]$ with $a<b$ and let $J=(a, b),[a, b]$, $(a, b]$ or $[a, b)$. Let r be an integer not less than 3 . Then we have

$$
\begin{equation*}
\left|\int_{(\mathbb{R} / \mathbb{Z})^{r}} \chi_{J}\left(-2 \sum_{j=1}^{r} \cos \left(2 \pi x_{j}\right)\right) d x_{1} \cdots d x_{r}-|J|\right| \leq 2 \zeta\left(\frac{r}{2}\right)(2 \pi)^{-r}|J| . \tag{9}
\end{equation*}
$$

Proof. Hereafter we write $z=2 \sum_{j=1}^{r} \cos \left(2 \pi x_{j}\right)$ and $W=(\mathbb{R} / \mathbb{Z})^{r}$ for simplicity. By (7), we evaluate the integrals:

$$
\begin{equation*}
\int_{W}\left\{B_{K}(\mp(z+b))+B_{K}(\pm(z+a))\right\} d x_{1} \cdots d x_{r} \tag{10}
\end{equation*}
$$

Substituting (4), the definition of $B_{K}(x)$, and using the integral formula

$$
\begin{aligned}
\int_{W} e^{ \pm 2 \pi i k(z+a)} d x_{1} \cdots d x_{r} & =e^{ \pm 2 \pi i k a}\left(\int_{0}^{1} e^{4 \pi i k \cos 2 \pi x} d x\right)^{r} \\
& =e^{ \pm 2 \pi i k a} J_{0}(4 \pi k)^{r}
\end{aligned}
$$

(see [5, p. 81]), we have

$$
\begin{align*}
& \int_{W} B_{K}(z+a) d x_{1} \cdots d x_{r}=\int_{W}\left\{V_{K}(z+a)+\frac{\Delta_{K+1}(z+a)}{2(K+1)}\right\} d x_{1} \cdots d x_{r} \\
& =\frac{1}{K+1} \sum_{k=1}^{K} f\left(\frac{k}{K+1}\right) \sin (2 \pi k a) J_{0}(4 \pi k)^{r} \\
& \quad+\frac{1}{2(K+1)}\left\{1+\sum_{\substack{|k| \leq K+1 \\
k \neq 0}}\left(1-\frac{|k|}{K+1}\right) e^{2 \pi i k a} J_{0}(4 \pi k)^{r}\right\} \tag{11}
\end{align*}
$$

From (8) the absolute value of the last term on the right hand side of (11) is estimated as

$$
\begin{aligned}
& \leq \frac{1}{2(K+1)}\left\{1+2(2 \pi)^{-r} \sum_{k=1}^{K+1}\left(1-\frac{k}{K+1}\right) k^{-r / 2}\right\} \\
& \leq \frac{1}{2(K+1)}\left\{1+2(2 \pi)^{-r} \zeta\left(\frac{r}{2}\right)\right\} \leq \frac{1}{K} .
\end{aligned}
$$

Hence the integral of $B_{K}(z+a)$ is given by

$$
\begin{gathered}
\int_{W} B_{K}(z+a) d x_{1} \cdots d x_{r} \\
=\frac{1}{K+1} \sum_{k=1}^{K} f\left(\frac{k}{K+1}\right) \sin (2 \pi k a) J_{0}(4 \pi k)^{r}+G_{1}(a)
\end{gathered}
$$

with the bound $\left|G_{1}(a)\right| \leq \frac{1}{K}$. The integral of $B_{K}(-z-b)$ is given in the same way,

$$
\begin{gathered}
\int_{W} B_{K}(-z-b) d x_{1} \cdots d x_{r} \\
=-\frac{1}{K+1} \sum_{k=1}^{K} f\left(\frac{k}{K+1}\right) \sin (2 \pi k b) J_{0}(4 \pi k)^{r}+G_{2}(b)
\end{gathered}
$$

with the same upper bound $\left|G_{2}(b)\right| \leq \frac{1}{K}$. Adding the above expressions we have

$$
\begin{aligned}
& \left|\int_{W}\left\{B_{K}(-z-b)+B_{K}(z+a)\right\} d x_{1} \cdots d x_{r}\right| \\
& \quad \leq\left|\frac{1}{K+1} \sum_{k=1}^{K} f\left(\frac{k}{K+1}\right)(\sin 2 \pi k a-\sin 2 \pi k b) J_{0}(4 \pi k)^{r}\right|+\frac{2}{K} \\
& \quad \leq \frac{2}{K+1} \sum_{k=1}^{K}\left|f\left(\frac{k}{K+1}\right)\right||\sin \pi k(a-b)|(2 \pi)^{-r} k^{-\frac{r}{2}}+\frac{2}{K} \\
& \quad \leq \frac{(2 \pi)^{1-r}}{K+1}(b-a) \sum_{k=1}^{K}\left|f\left(\frac{k}{K+1}\right)\right| k^{1-\frac{r}{2}}+\frac{2}{K} .
\end{aligned}
$$

Now we estimate the sum in the above equation. Let ε be a small positive number, and take $\eta<\frac{1}{2}$ to be a small positive number which satisfies $\frac{\pi \eta}{\sin \pi \eta}<1+\varepsilon$. Dividing the sum into two parts at $[\eta(K+1)]$ and using (3), we have

$$
\frac{1}{K+1} \sum_{k=1}^{K}\left|f\left(\frac{k}{K+1}\right)\right|^{1-\frac{r}{2}} \leq \frac{1}{K+1} \sum_{k=1}^{[\eta(K+1)]}\left(\frac{\pi \eta}{\sin \pi \eta} \frac{K+1}{\pi k}+\frac{1}{\pi}\right) k^{1-\frac{r}{2}}
$$

$$
\begin{aligned}
& +\frac{1}{K+1}\left(\frac{1-\eta}{\sin \pi(1-\eta)}+\frac{1}{\pi}\right) \sum_{k=[\eta(K+1)]+1}^{K} k^{1-\frac{r}{2}} \\
\leq & \frac{1}{\pi}(1+\varepsilon) \zeta\left(\frac{r}{2}\right)+O\left(\frac{1}{\sqrt{K}}\right),
\end{aligned}
$$

where the implied constant in the last equation does not depend on K. Therefore

$$
\begin{aligned}
& \left|\int_{W}\left\{B_{K}(-z-b)+B_{K}(z+a)\right\} d x_{1} \cdots d x_{r}\right| \\
& \\
& \quad \leq 2(2 \pi)^{-r}(b-a)(1+\varepsilon) \zeta\left(\frac{r}{2}\right)+O\left(\frac{1}{\sqrt{K}}\right) .
\end{aligned}
$$

In the same manner we have

$$
\begin{aligned}
& \left|\int_{W}\left\{B_{K}(z+b)+B_{K}(-z-a)\right\} d x_{1} \cdots d x_{r}\right| \\
& \quad \leq 2(2 \pi)^{-r}(b-a)(1+\varepsilon) \zeta\left(\frac{r}{2}\right)+O\left(\frac{1}{\sqrt{K}}\right) .
\end{aligned}
$$

Thus from (5), (6) and (7) we get the upper bound of the left hand side of (9):

$$
\begin{aligned}
& \left|\int_{W} \chi_{J}\left(-2 \sum_{j=1}^{r} \cos \left(2 \pi x_{j}\right)\right) d x_{1} \cdots d x_{r}-|J|\right| \\
& \quad \leq 2(1+\varepsilon) \zeta\left(\frac{r}{2}\right)(2 \pi)^{-r}|J|+O\left(\frac{1}{\sqrt{K}}\right) .
\end{aligned}
$$

Now we let $K \rightarrow \infty$, as ε is arbitrary, we get the assertion of the lemma.
Proof of Theorem 1. Now we study $\lim _{N \rightarrow \infty} S_{N}(\alpha, I)$ of (2). Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be real sequences with $y_{n} \rightarrow 0$. Then it is easily seen from [6], Chapter 1, Theorem 7.3 that if $\left(x_{n}\right)$ has a continuous asymptotic density function, then $\left(x_{n}+y_{n}\right)$ also does and their density functions are the same. Thus it is able to ignore the term α^{-m} in (2).

Our task is to consider the integral:

$$
\int_{W} \chi_{I}\left(-2 \sum_{j=1}^{r} \cos \left(2 \pi x_{j}\right)\right) d x_{1} \cdots d x_{r} .
$$

Applying (9) to the interval I, we get the assertion of Theorem 1.

3. Proof of Theorem 2

Let us follow the proof of Theorem 1 with $r=1,2$. In this case, we have

$$
\begin{align*}
Y & :=\left|\int_{W}\left\{B_{K}(-z-b)+B_{K}(z+a)\right\} d x_{1} \cdots d x_{r}\right| \\
& =\frac{2(2 \pi)^{-r}}{K+1} \sum_{k=1}^{K}\left|f\left(\frac{k}{K+1}\right)\right||\sin \pi k(a-b)| k^{-r / 2}+O\left(K^{-1 / 2}\right) . \tag{12}
\end{align*}
$$

Let ε be a small positive number and take a small positive η such that $\pi \eta /(\sin \pi \eta)<1+\varepsilon$ and a large integer K such that $1 /(b-a)<\eta(K+1)<K$. We also introduce another parameter $0<v<1$ which is chosen later. Divide the summation in (12) into three parts

$$
\frac{2(2 \pi)^{-r}}{K+1}\left\{\sum_{k \leq \frac{v}{b-a}}+\sum_{\frac{v}{b-a}<k \leq \eta(K+1)}+\sum_{\eta(K+1)<k \leq K}\right\}=: S_{1}+S_{2}+S_{3} .
$$

If $b-a \leq v$, using $|\sin \pi k(b-a)| \leq \pi k(b-a)$ and (3), we get

$$
S_{1} \leq \begin{cases}\frac{(1+\varepsilon)(b-a)}{\pi}\left(2 \sqrt{\frac{v}{b-a}}-1\right)+O\left(\frac{1}{K}\right) & r=1 \\ \frac{(1+\varepsilon)(b-a)}{2 \pi^{2}}\left(\log \frac{v}{b-a}+1\right)+O\left(\frac{1}{K}\right) & r=2\end{cases}
$$

while if $b-a>v, S_{1}$ is trivially zero. If $b-a \leq v$, the trivial bound $|\sin \pi k(b-a)| \leq 1$ implies, for $r=1,2$,

$$
S_{2} \leq \frac{4(1+\varepsilon)}{(2 \pi)^{r+1}}\left(\frac{b-a}{v}\right)^{\frac{r}{2}}\left(\frac{2}{r}+\frac{b-a}{v}\right)+O\left(K^{-1 / 2}\right),
$$

while if $b-a>v$,

$$
S_{2} \leq \frac{4(1+\varepsilon)}{(2 \pi)^{r+1}} \zeta\left(1+\frac{r}{2}\right)+O\left(K^{-1 / 2}\right)
$$

Finally we have $S_{3}=O\left(K^{-1 / 2}\right)$ for $r=1,2$. The implied constants do not depend on K. Now we let $K \rightarrow \infty$.

In the case $r=1$ we get

$$
Y \leq \begin{cases}\frac{(1+\varepsilon) \sqrt{b-a}}{\pi}\left\{2\left(\sqrt{v}+\frac{1}{\pi \sqrt{v}}\right)-\sqrt{b-a}+\frac{b-a}{\pi v^{\frac{3}{2}}}\right\} & b-a \leq v \\ \frac{1+\varepsilon}{\pi^{2}} \zeta\left(\frac{3}{2}\right) & b-a>v\end{cases}
$$

Taking $v=1 / \pi$, it follows that

$$
Y \leq 4 \pi^{-\frac{3}{2}}(1+\varepsilon) \sqrt{b-a}
$$

For $r=2$, we have

$$
Y \leq \begin{cases}\frac{(1+\varepsilon)(b-a)}{2 \pi^{2}}\left(\log \frac{1}{b-a}+1+\frac{1}{\pi v}+\log v+\frac{b-a}{\pi v^{2}}\right) & b-a \leq v \\ \frac{1+\varepsilon}{2 \pi^{3}} \zeta(2) & b-a>v\end{cases}
$$

Now taking $v=1 / \sqrt{\pi}$, we get

$$
Y \leq \frac{(1+\varepsilon)(b-a)}{2 \pi^{2}}\left(\log \frac{1}{b-a}+1+(b-a)\right)
$$

The same estimates are valid for

$$
\int_{W}\left\{B_{K}(z+b)+B_{K}(-z-a)\right\} d x_{1} \cdots d x_{r}
$$

with $r=1,2$. Since ε is chosen arbitrarily, we obtain Theorem 2.

4. Examples

To illustrate the result, we give examples of distributions for Salem numbers of degree 4,6 and 8 . The interval $[0,1]$ is divided into 100 pieces. We computed the fractional part of α^{n} for $1 \leq n \leq 200000$, and counted the number of n so that the fractional part of α^{n} falls into each subintervals. The vertical axis indicates the number of such n.

Figure 1. Salem number for $x^{4}-x^{3}-x^{2}-x+1=0$

Figure 2. Salem number for $x^{6}-x^{5}-x^{4}+x^{3}-x^{2}-x+1=0$

Figure 3. Salem number for $x^{8}-2 x^{7}+x^{6}-x^{4}+x^{2}-2 x+1=0$

Acknowledgements. The authors express their sincere gratitude to the referee for many valuable comments.

References

[1] M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathi-aux-Delefosse and J. P. Schreiber, Pisot and Salem numbers, Birkhäuser Verlag, Basel - Boston - Berlin, 1992.
[2] F. Beukers, Fractional parts of powers of 3/2, Prog. Math. 22 (1982), 13-18.
[3] D. W. Boyd, Salem numbers of degree four have periodic expansions, Théorie des nombres, Number Theory, Walter de Gruyter, Berlin, New York, 1989, 57-64.
[4] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, 1997.
[5] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953.
[6] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Math., John Wiley \& Sons, 1974.
[7] M. B. Levin, On the complete uniform distribution of the fractional parts of the exponential function, Trudy Sem. Petrovsk., no. 7 (1981), 245-256 (in Russian).
[8] H. L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, Conference Board of the Math. Sci., Vol. 84, AMS, 1994.
[9] G. N. Watson, A Treatise on the Theory of Bessel Functions, (CML edition), Cambridge University Press, New York, 1995.

SHIGEKI AKIYAMA
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
NIIGATA UNIVERSITY
IKARASHI 2-8050, NIIGATA 950-2181
JAPAN
E-mail: akiyama@math.sc.niigata-u.ac.jp
YOSHIO TANIGAWA
GRADUATE SCHOOL OF MATHEMATICS
NAGOYA UNIVERSITY
CHIKUSA-KU, NAGOYA 464-8602
JAPAN
E-mail: tanigawa@math.nagoya-u.ac.jp
(Received November 15, 2002; revised April 14, 2003)

[^0]: Mathematics Subject Classification: 11K06, 11J71.
 Key words and phrases: Pisot number, Salem number, Distribution modulo 1, Selberg polynomial.
 Authors were supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology, Grant-in Aid for fundamental research 14540015 and 14540021, 20022005.

