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ABSTRACT. We improve the results in [1] on the characterization of multiple
points in rational based number system, in connection with Mahler’s Z-number
problem. As a by-product, we show that when p > q2, there exists a positive
x such that the fractional part of x(p/q)n (n = 0, 1, . . . ) stays in a Cantor set
(Theorem 2.5). Hausdorff dimension of the set is positive but tends to zero as
p →∞ when q is fixed.

Communicated by Yann Bugeaud

1. Representations in a rational base

Let us review the result in [1]. Let p, q be coprime integers with p > q > 1
and consider a digit set A = {0, 1, . . . , p − 1}. Every positive integer u has a
unique representation:

u = u0
1
q

+ u1
p

q2
+ u2

p2

q3
+ · · ·+ u`

p`

q1+`

with ui ∈ A. The digits ui are successively determined by taking module p of
both sides in the ring Zq = {z/qn | z ∈ Z, n ≥ 0}, the localization of Z by q.
Following the convention of decimal expression, we write u = u`u`−1 . . . u1u0

and identify with the word in A∗. The set of words which represent positive
integers is denoted by Lp/q ⊂ A∗. Then the set Lp/q is not even context free
since no infinite repetition is allowed but 0∞. However the odometer is given
by an automaton. A positive real number x not greater than a given constant
θ = θ(p/q) > 1 has a representation in a form:

x = x−1
1
p

+ x−2
q

p2
+ · · ·+ x−`

q`

p1+`
+ · · · = .x−1x−2 . . .
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with the property that x−1x−2 . . . x−m ∈ Lp/q for all positive integers m. This
θ(p/q) corresponds to the maximal word W (0) by the notation of [1] and is
explicitly written as:

θ

(
p

q

)
=

∞∑

i=0

(
qGi+1

p
−Gi

) (
q

p

)i

with G0 = 0 and Gi+1 = b(pGi + p− 1)/qc. For any real number x, there exists
M > 0 that x(q/p)M ≤ θ(p/q). This means that we can expand any x > 0 into

x = xMxM−1 . . . x0.x−1x−2 . . .

using the decimal point ‘.’ in a usual manner. From the property of Lp/q,
there are no eventually periodic expansions. The p/q-integer part (resp. p/q-
fractional part) of x is defined to be xMxM−1 . . . x0. (resp. .x−1x−2 . . . ). We
put the decimal point to distinguish them with other representations. This
representation is unique but countably many exceptions.

Define 〈x〉 = x−bxc, the fractional part of x. If p ≥ 2q− 1, then there are no
x which admit three different expressions and we have a good characterization
of such exceptional x’s having two p/q-representations:

Theorem 1.1 ( Akiyama-Frougny-Sakarovitch [1]). Let p ≥ 2q − 1. Then a
positive real number x has two p/q-representations if and only if there exists n0

so that 〈
x

q

(
p

q

)n〉
∈

⋃

0≤c≤q−1

[
kc

p
,
kc + 1

p

[
(1)

holds for all n ≥ n0. The number kc ∈ A is defined by qkc ≡ c (mod p).

P r o o f. We only review an easy part, the necessity of the condition (1) for the
purpose of this note. It is shown in [1] that the digit-wise difference of eventually
maximal word and eventually minimal word is formally: 0∗(−q)(p− q)∞ by the
special feature of our representation. Therefore x has double representations if
and only if x has a suffix in {0, . . . , q−1}N, since p−1−(p−q) = q−1. Thus there
exists n0 that for n ≥ n0 we can expand (p/q)nx = cMcM−1 . . . c0.c−1c−2 . . .
with M = M(n) and c−j ∈ {0, . . . , q − 1} for j = 1, 2, . . . . We have an estimate

.c−1c−2 · · · < q − 1
p− q

≤ 1.

Since p/q-integer parts have integer values, this inequality means that the p/q-
fractional part (resp. p/q-integer part) of x coincides with the usual fractional
part (resp. integer part) of x. Let us consider a function f(x) = q(bxp/qc −
(p/q)bxc). By the above claim, if x admits double expressions, then we have

f((p/q)nx) = q(cMcM−1 . . . c0c−1.− cMcM−1 . . . c00.) = q × c−1. = c−1
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Thus for large n, f((p/q)nx) takes values only in {0, 1, . . . , q − 1}. Note that f
is a periodic function of period q and the value of f((p/q)nx) is determined by
x (mod q) ∈ R/qZ. Now using p ≥ 2q − 1, it is easy to show

f−1({0, 1, . . . , q − 1}) =
⋃

0≤c≤q−1

[
qkc

p
,
q(kc + 1)

p

[

which shows the necessity. ¤

The same idea allows us to show

Theorem 1.2. For an integer k with p − 1 ≤ k(p − q), if a real number x has
k different p/q-representations then there exists n0 so that

〈
x

q

(
p

q

)n〉
∈

⋃

0≤c≤(k−1)q−(k−2)p−1

[
kc

p
,
kc + 1

p

[
(2)

holds for all n ≥ n0.

P r o o f. We proceed in a similar manner as the above proof of Theorem 1.1.
Only thing to note is that x has k different representations if and only if x
has a suffix in {0, . . . , (k − 1)q − (k − 2)p − 1}∗, since p − 1 − (k − 1)(p − q) =
(k−1)q−(k−2)p−1 and (p/q)nx = cMcM−1 . . . c0.c−1c−2 . . . for large n satisfies

.c−1c−2 · · · < (k − 1)q − (k − 2)p− 1
p− q

≤ 1.

¤

Corollary 1.3. A real number has at most 1+
⌊

p−2
p−q

⌋
different p/q-representa-

tions.

P r o o f. An inequality 1 ≤ (k−1)q−(k−2)p−1 is necessary to have an aperiodic
expansion of x > 0. ¤

As far as we computed, there seems no triple points for any p/q-representations.
Perhaps it is reasonable to pose a

Conjecture 1.4. There are no positive real x so that
〈

x

(
p

q

)n〉
∈

⋃

0≤c≤2q−p−1

[
kc

p
,
kc + 1

p

[

holds for all n,
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which implies that there are no x with triple expressions when p− 1 ≤ 3(p− q).
For e.g., if p = 4 and q = 3 then the conjecture asserts that there are no positive
x such that 〈

x

(
4
3

)n〉
∈ [0, 1/4) ∪ [3/4, 1)

holds for all n ≥ 0. This is also equivalent to the statement that there are no
real x such that ||x(4/3)n|| < 1/4 for all n, where ||y|| is the distance of y from
the nearest integer. Here the left endpoint of [3/4, 1) can be neglected. In fact,
〈x(4/3)n〉 = 3/4 occurs only when x is rational and at most once for such a x
by seeing the denominator of x. However we may substitute x by x(4/3)n+1 in
such a case. The end points usually do no harm by this trick.

2. A generalization of Mahler’s Z-number

One can show stronger results than the ones in the previous section. Before
stating the result, we begin with some terminologies. Let F be a finite union
of half open subintervals [a, b) of [0, 1) and µ(F ) be the 1-dimensional Lebesgue
measure of F . We study two sets Z+

p/q(F ) = {0 < x ∈ R | 〈x(p/q)n〉 ∈ F} and
Zp/q(F ) = {x ∈ R | 〈x(p/q)n〉 ∈ F}. In fact, our framework is much suitable for
the study of Z+

p/q(F ) but occasionally we can deduce results on Zp/q(F ) as well.
The notorious problem in this context is due to Mahler [4] whether Z+

p/q([0, 1/2))
is empty or not. Our question is to find a small µ(F ) such that Z+

p/q(F ) 6= ∅. For
developments on the distribution of limit points of 〈x(p/q)n〉, the reader should
consult series of papers by Dubickas for e.g. [2, 3]. He also derived a large µ(F )
with Zp/q(F ) = ∅.

Theorem 1.1 implies that if p ≥ 2q− 1 then there exists some F with µ(F ) =
q/p that Z+

p/q(F ) is countably infinite. For e.g., using Theorem 1.1 with p = 3
and q = 2, we see Z+

3/2([0, 1/3) ∪ [2/3, 1)) is countably infinite. Thus there
exists a real x’s such that ||x(3/2)n|| < 1/3 for all n. As a refinement of Theorem
1.1, we have

Theorem 2.1. Let p > q > 1 with p ≥ 2q − 1. Then a positive real number x
has two p/q-representations if and only if there exists n0 so that

〈
x

q

(
p

q

)n〉
∈

⋃

0≤c≤q−1

]
kc

p
,
kc

p
+

q − 1
p(p− q)

[
(3)

holds for all n ≥ n0. The number kc ∈ A is defined by qkc ≡ c (mod p).
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This Theorem implies that for p ≥ 2q − 1, two conditions (1) and (3) are
equivalent, in fact. Further, this implies that there exists a finite union of
intervals F with µ(F ) = q(q−1)

p(p−q) such that Z+
p/q(F ) is countably infinite.

P r o o f. As the right hand side of (3) is narrower than (1), the sufficiency of
the condition (3) is obvious. We only prove the necessity. Firstly we shall show
a weaker statement. The open intervals of (3) are substituted by closed ones.
Here the idea is to generalize the function f(x) to

fm(x) = qm

⌊
x

pm

qm

⌋
− pmbxc

with a large integer m(≥ 2) in the proof of Theorem 1.1. Using the same idea,
this function fm has period qm and if x is a double point then

fm((p/q)nx) = qm(cMcM−1 . . . c0c−1 . . . c−m.− cMcM−1 . . . c00m.)

= qm × c−1 . . . c−m. =
m∑

j=1

pm−jqj−1c−j

holds for a large n. Our task is to construct concretely the inverse image of fm.
Take k∗ = k∗(c−1, c−2, . . . , c−m) ∈ {0, 1, . . . , pm − 1} which satisfies

m∑

j=1

pm−jqj−1c−j ≡ qmk∗ (mod pm). (4)

By using the same proof of Theorem 1.1, we have
〈

x

qm

(
pm

qm

)n〉
∈

⋃

(c−1,...,c−m)∈{0,...,q−1}m

[
k∗

pm
,
k∗ + 1

pm

[

for mn ≥ n0 where n0 is the same as in the proof of Theorem 1.1. Multiplying
qm−1, we have

x

q

(
pm

qm

)n

(mod qm−1) ∈
⋃

(c−1,...,c−m)

[
qm−1k∗

pm
,
qm−1(k∗ + 1)

pm

[
. (5)

From (4), one see

pm−1kc−1 +
m∑

j=2

pm−jqj−2c−j ≡ qm−1k∗ (mod pm). (6)
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Without loss of generality, we may assume that c−2 . . . c−m 6= (q − 1)m−1.
Therefore we have an estimate

m∑

j=2

pm−jqj−2c−j < pm−2 q − 1
1− q/p

(
1−

(
q

p

)m−1
)
≤ pm−1 − qm−1.

Thus the left hand side of (6) belongs to [0, pm−1]∩Z. Taking modulo 1 of (5),
we have 〈

x

q

(
pm

qm

)n〉
∈

⋃
c−1

⋃
c−2

· · ·
⋃
c−m


kc−1

p
+

m∑

j=2

c−j
qj−2

pj
,

kc−1

p
+

m∑

j=2

c−j
qj−2

pj
+

qm−1

pm


 . (7)

Note that

⋃
c−2

· · ·
⋃
c−m


kc

p
+

m∑

j=2

c−j
qj−2

pj
,

kc

p
+

m∑

j=2

c−j
qj−2

pj
+

qm−1

pm




is contained in the interval
kc

p
,

kc

p
+

m∑

j=2

(q − 1)qj−2

pj
+

qm−1

pm


 .

Thus we have

〈
x

q

(
pm

qm

)n〉
∈

⋃
c

[
kc

p
,

kc

p
+

q − 1
p(p− q)

+
qm−1

pm

p− 1
p− q

[
.

This implies that there exists n1 so that for any positive ε,
〈

x

q

(
p

q

)n〉
∈

⋃
c

[
kc

p
,

kc

p
+

q − 1
p(p− q)

+ ε

[

holds for n ≥ n1. This shows the weaker statement for closed intervals. Consider
end points of the intervals of (3). As we may assume that c−2 . . . c−m 6= 0m−1 or
(q − 1)m−1, we easily see that such end points can not be attained in the above
proof. ¤

Remark 2.2. In the above proof, if q2 ≥ p ≥ 2q − 1, then

⋃
c−2

· · ·
⋃
c−m


kc

p
+

m∑

j=2

c−j
qj−2

pj
,

kc

p
+

m∑

j=2

c−j
qj−2

pj
+

qm−1

pm
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is exactly equal to 
kc

p
,

kc

p
+

m∑

j=2

(q − 1)qj−2

pj
+

qm−1

pm


 .

To see this, we note

qm−k−1

pm−k+1
≤

∞∑

j=2

(q − 1)qm−j

pm−j+2
≤

k∑

j=2

(q − 1)qm−j

pm−j+2
+

qm−1

pm
.

The left inequality follows from q2 ≥ p and the right from p ≥ 2q − 1.

Following the same proof, we have

Theorem 2.3. For an integer k with p − 1 ≤ k(p − q), if a real number x has
k different p/q-representations then there exists n0 so that

〈
x

q

(
p

q

)n〉
∈

⋃

0≤c≤(k−1)q−(k−2)p−1

]
kc

p
,
kc

p
+

(k − 1)q − (k − 2)p− 1
p(p− q)

[
(8)

holds for all n ≥ n0.

It is remarkable that if p > q2, the result becomes better.

Theorem 2.4. Let p > q > 1 with p > q2. Then for any positive ε, there exists
a finite union of intervals F with µ(F ) < ε and a positive real number x has two
p/q-representations if and only if there exists n0 so that

〈
x

q

(
p

q

)n〉
∈ F (9)

holds for all n ≥ n0.

Thus for p > q2 there exists a finite union of intervals F of an arbitrary small
size µ(F ) such that Z+

p/q(F ) is countably infinite. In the following, we shall
prove a stronger result.

A set X = X(p/q) is given as a non empty compact set in R satisfying an
iterated function system:

X =
q−1⋃

j=0

qX + j

p
.

It is approximated by a decreasing sequence of sets defined by X0 =
[0, (q − 1)/(p − q)] and Xk+1 =

⋃q−1
j=0(qXk + j)/p for k = 0, 1, . . . . We see

X = ∩kXk and all end points of Xk are in X. As p > q2, µ(X) = 0 follows
from the definition. The pieces (qX + j)/p do not overlap, this system gives a
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Cantor set in [0, (q−1)/(p−q)] of Hausdorff dimension log q/ log(p/q) < 1 which
is positive but tends to zero as p →∞ and q is fixed.

Theorem 2.5. Let p > q > 1 with p > q2. Then a positive x has two p/q-
representations if and only if there exists n0 that

〈
x

q

(
p

q

)n〉
∈

q−1⋃
c=0

X(p/q) + kc

p
(10)

for n ≥ n0.

As Xk (k = 0, 1, . . . ) are finite unions of intervals, Theorem 2.4 follows im-
mediately from Theorem 2.5.

P r o o f. Since X(p/q) ⊂ [0, (q − 1)/(p− q)], the sufficiency of (10) follows from
Theorem 2.1. We show the necessity. It is easily seen that

X(p/q) =

{ ∞∑

i=0

c−i
qi

pi+1

∣∣∣∣∣ c−i ∈ [0, q − 1] ∩ Z
}

.

We proceed in the same manner as the proof of Theorem 2.1. If x admits two
p/q-representations, then there exists n0 such that (7) holds for mn ≥ n0. Each
element u of 

kc

p
+

m∑

j=2

c−j
qj−2

pj
,

kc

p
+

m∑

j=2

c−j
qj−2

pj
+

qm−1

pm




has distance at most qm−1/pm from the compact set (X(p/q) + kc)/p. As we
can choose m large, the distance of the point 〈x/q(p/q)n〉 and the compact set⋃q−1

c=0(X(p/q) + kc)/p is zero, which proves the theorem. ¤

Denominators of end points of Xk are divisors of (p(p − q))k+1 which are
coprime to q. Thus, as n increases, 〈x/q(p/q)n〉 can visit the end points at most
once only when x is rational.

Note that if x is a double point, then there exists n0 such that 〈x(p/q)n〉 =
.c−1c−2 . . . with c−i ∈ [0, q − 1] ∩ Z for n ≥ n0. This already implies that
〈x(p/q)n〉 ∈ X(p/q). We observe that (10) is stronger than this inclusion. In-
deed, (10) implies

x

(
p

q

)n

(mod q) ∈
⋃
c

(
qX

p
+

qkc

p

)

and taking modulo 1, we get 〈x(p/q)n〉 ∈ X(p/q) again.
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At any rate, it is unexpected that when p > q2 there exists x > 0 that the
closure of 〈x(p/q)n〉 (n = 0, 1, . . . ) is contained in the Cantor set X(p/q), a
compact set of measure zero. We do not know whether the closure of K =
{〈x(p/q)n〉| n = 0, 1, . . . } could be of Hausdorff dimension 0. In the other
direction, Vijayaraghavan [5] showed that the number of accumulation points of
K is infinite but it is not known whether the closure of K could be countable.
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