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Cubic Pisot units with finite beta
expansions

Shigeki Akiyama

Abstract. Cubic Pisot units with finite beta expansion property are classified (Theorem
3). The results of [6] and [3] are well combined to complete its proof. Further, it is noted
that the above finiteness property is equivalent to an important problem of fractal tiling
generated by Pisot numbers.
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1. Introduction and the results

Let β > 1 be a fixed real number. Any positive real x is expanded as:

x =
∞∑

i=N0

a−iβ
−i = a−N0β

−N0 + a−N0−1β
−N0−1 + · · ·

with ai ∈ Z ∩ [0, β). Here we assume the ’greedy condition’:
∣∣∣∣∣x−

N∑

i=N0

a−iβ
−i

∣∣∣∣∣ < β−N (1)

holds for all N ≥ N0. Hereafter we call this expansion a beta expansion of x in
base β. This is a natural extension of decimal or binary expansion to a real base
β. Fundamental ergodic properties of this expansion, as a dynamical system on
the real torus R/Z, can be found in Rényi [14] and Parry [11]. A Pisot number
is an algebraic integer whose conjugates other than itself have modulus less than
one. A Salem number is an algebraic integer whose conjugates other than itself
have modulus less than or equal to one, and at least one conjugate has modulus
one. Let Fin(β) be a set consisting of all finite beta expansions. Consider the
condition

(F) Fin(β) = Z[β−1]≥0.
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It is easily seen that if β > 1 is an integer, then (F) holds. Conversely it is
proved in Lemma 1 of [6], the condition (F) implies that β is a Pisot number. In
the same paper, they showed that if Z≥0 ⊂ Fin(β) then β must be a Pisot number
or a Salem number. We can show a slight improvement of this.

Proposition 1. Let β > 1 be a real number. Then Z≥0 ⊂ Fin(β) implies that β
is a Pisot number.

From now on we assume that β is a Pisot number. There exists a Pisot number
which does not satisfy (F). To find a simple algebraic characterization of Pisot
numbers with (F) is an open question, to this date. Let

Irr(β) = xm − am−1x
m−1 − am−2x

m−2 − . . .− a0

be a minimal polynomial of β with ai ∈ Z. In [6], a beautiful sufficient condition
is shown:

Theorem 1 (Frougny and Solomyak). If

am−1 ≥ am−2 ≥ . . . ≥ a0 > 0,

then β has property (F).

Their proof is an algorithmic one, by showing the existence of finite algorithm
to rewrite each element of Z[β−1]≥0 into a form satisfying (1). M.Hollander, in
his thesis [7], showed another sufficient condition:

am−1 > am−2 + am−3 + . . . + a0 with ai ≥ 0.

The author proved a necessary and sufficient condition for a fixed β in [3] and [1].
We quote it, in a weak form:

Theorem 2 (Akiyama). Let β be a Pisot number. Then β has the property (F)
if and only if every element of

{
x ∈ Z[β]

∣∣∣∣ 0 < x = x(1) < 1, |x(j)| ≤ [β]
1− |β(j)| j = 2, 3, . . . ,m

}

has finite beta expansion in base β. Here x(i) (i = 1, 2, . . . , m) are the conjugates
of x ∈ Q(β).

Since the above set is finite, we can actually determine whether β has property
(F) or not. Obvious defect of this result is the vagueness of the condition.

A Pisot number β is called a Pisot unit if it is also a unit of the integer ring
of Q[β]. The main purpose of this note is to compare above two theorems. As a
result, combining these we can show,

Theorem 3. Let β be a cubic Pisot number. Then β > 1 has property (F) if and
only if β is a root of the following polynomial with integer coefficients:

x3 − ax2 − bx− 1, a ≥ 0 and − 1 ≤ b ≤ a + 1.
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This theorem asserts that the Pisot number defined by

x3 − ax2 + x− 1, a ≥ 2,

and

x3 − ax2 − (a + 1)x− 1, a ≥ 0,

has property (F). (Note that the first type of polynomials are not irreducible when
a = 0, 1.) These are not included in the former results of [6] and [7], but the proof
is rather lengthy and established by brute force. See section 3 and 4.

The beta expansion by a Pisot number has a close connection with tiling of the
Euclidean space. In [13], G.Rauzy constructed a domain with a fractal boundary
by the Pisot number β with Irr(β) = x3 − x2 − x − 1. In [18], you can find a
formulation of the tiling by such domains for general Pisot numbers. These results
are extended by many authors. See e.g., [8] and [9]. The condition (F) is used to
construct Markov partition for a certain toral automorphism in [12]. On the other
hand, the author studied these tiling from a different point of view in [2] and [3].
Now we review this result. Let Φ be the map from Q(β) to Rm−1 defined by:

Φ(x) = (x(2), x(3) . . . , x(r1),Re x(r1+1), Im x(r1+1), . . . , Rex(r1+r2), Im x(r1+r2))

where β(i) (i = 1, 2, . . . , r1) are real conjugates and β(r1+i) (i = 1, 2, . . . , r2)
and β(r1+r2+i)(= β(r1+i)) (i = 1, 2, . . . , r2) are complex conjugates of β. Let us
classify elements of Fin(β) by its fractional part:

Fin(β) =
⊔
ω

Sω.

Here ω runs through all possible fractional parts with (1) and Sω is the subset of
Fin(β) consisting of elements whose fractional part coincides with ω. Each element
ω is expressed as a greedy word with the leading point character, for example .1
or .001. Especially S. is the set of all finite beta expansions in base β with no
fractional part. Applying Φ and taking the closure by the topology of Rm−1, we
see

Rm−1 =
⊔
ω

Φ(Sω),

when β is a Pisot number with property (F), by Theorem 2 of [3]. Denote Tω =
Φ(Sω). We quote Theorem 3 of [3] (the essential idea can be found in [1]).

Theorem (Akiyama). Suppose β is a Pisot unit with property (F). Then the
origin is an inner point of T. = Φ(S.).

Concerning this theorem, we have to say a few words on the works of B.Praggastis.
The author got to know by the paper of [17], she already showed this at least in
a special case in her thesis [12]. It seems the strategy of two proofs are quite dif-
ferent. Her method is to construct a Markov partition in a general situation. Her
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construction seems a little involved. Our method is rather restricted but readers
are required a quite simple geometry of numbers. The author hopes that this way
is promising in studying the more precise information on this tiling.

In any case, this theorem is very much fundamental. In fact, we can show, the
set of inner points of Tω is dense in Tω. (In the standard terminology, by this
property, we can call Tω to be a tile.) Moreover we see the boundary is nowhere
dense in Rm−1 (see [3]).

In this paper, we show

Proposition 2. Let β be a Pisot unit. Then β has property (F) if and only if the
origin in an inner point of T..

This proposition is a certain geometric characterization of the property (F). It
also describes the significance of our Theorem 3. The proofs of Proposition 1 and
2 are established in the last section.

2. Cubic Pisot units and their expansion of 1

For the moment let β > 1 be an arbitrary real number. Consider the beta expan-
sion of the positive number:

0 < 1− [β]β−1 = c−2β
−2 + c−3β

−3 + . . . = .0c−2c−3 . . . .

Putting c−1 = [β], we can formally write

1 = .c−1c−2c−3 . . . .

This expansion .c−1c−2c−3 . . . is called the expansion of 1, which we denote by
d(1, β). We will identify this expression with the word c−1c−2c−3 . . . generated by
A = Z ∩ [0, β). Every finite word generated by A represents a beta expansion in
base β if and only if the word is lexicographically less than d(1, β) at any starting
point. This fact can be generalized to infinite words apart from certain exceptions.
See [11] for the details.

Now let β > 1 be a cubic number with

Irr(β) = x3 − ax2 − bx− c,

and c 6= 0. Then we have

Lemma 1. The number β is a Pisot number if and only if both

|b− 1| < a + c and (c2 − b) < sgn(c)(1 + ac)

holds.

Proof. Let f(x) = x3 − ax2 − bx − c and f(β) = 0 with β > 1. Then above
conditions are equivalent to f(±1) < 0 and f(|c|) < 0. First we show the necessity
of these conditions. If f(1) ≥ 0 or f(−1) ≥ 0 then f has another root whose
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modulus is not less than 1. Thus β can not be a Pisot number. Since |c| is
the absolute norm of β, we see β > |c| when β is a Pisot number. This implies
f(|c|) < 0, by the similar consideration.

Now we show the sufficiency. Assume that f(±1) < 0 and f(|c|) < 0. Firstly,
assume that β is not totally real and β′ is a non real conjugate of β. Then we see
|c| = |ββ′β′| = β|β′|2. Since β is the only real root of f , we see f(|c|) < 0 implies
β > |c|. Thus β must be a Pisot number. Secondly, let β be totally real and β′

and β′′ be the real conjugates. Then f(±1) < 0 implies that |β′| − 1 and |β′′| − 1
are both positive, or both negative. If |β′| > 1 and |β′′| > 1, then |c| = β|β′β′′| is
greater than all roots of f . Thus f(|c|) > 0, which contradict with our assumption.
We have have shown |β′| < 1 and |β′′| < 1, which shows that β is a Pisot number.

ut

By Proposition 1 of [1], if a Pisot number has property (F) then β does not
have any positive conjugate other than β. This implies c > 0. Thus if we consider
a Pisot unit with (F), we may assume c = 1. By Lemma 1, we see |b − 1| ≤ a in
this case, which implies a ≥ 0.

Lemma 2. Let β > 1 be a cubic Pisot number with c = 1. Then the expansion of
1 in base β is given by the following table.

b d(1, β)
−a + 1 ≤ b ≤ −2 a− 1, a + b− 1, ã + b
b = −1 a− 1, a− 1, 0, 1
0 ≤ b ≤ a a, b, 1
b = a + 1 a + 1, 0, 0, a, 1

Here w̃ is the periodic expansion w, w,w, . . . .

Proof. One can easily see the right hand side is formally equal to 1, by the minimal
polynomial. According to the result of Parry [11], it suffices to confirm that the
above words are lexicographically less (or equal) than itself at any starting point.

ut

This lemma assures that if β is a Pisot unit with (F), then −1 ≤ b ≤ a +1 and
a ≥ 0. Thus our remaining task is to show the converse. By using Theorem 1, it
suffices to show property (F) for the following three cases:

x3 − ax2 + x− 1 a ≥ 2,

x3 − ax2 − 1 a ≥ 1

and

x3 − ax2 − (a + 1)x− 1 a ≥ 0.

First two cases are treated in the next section. (Note that the second case can
be shown by the result of [7] as well.) The third case is most difficult and will be
treated in section 4. It should be noted here, Theorem 3 can be rephrased as
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Theorem 4. A cubic Pisot unit β has property (F) if and only if d(1, β) is finite.

Proof. When c = −1, there exist a positive conjugate other than β. In this case,
d(1, β) can not be finite, by the proof of Proposition 1 in [1]. When c = 1, Lemma
2 shows the assertion, if we assume the truth of Theorem 3. ut

The statement of Theorem 4 is not true when we consider quaratic Pisot units.
See example 2 of [6]. Here we state another implication of Lemma 2.

Theorem 5. Let β be a cubic Pisot unit with (F). Then each tile Tω corresponding
to β is arcwise connected.

Proof. By using Theorem 3 in [3], the tile T. is arcwise connected if the last letter
of d(1, β) is 1. Thus Lemma 2 implies the arcwise connectedness of T.. The proof
for other tiles Tω are similar. ut

In [3], it is conjectured that the last letter of d(1, β) for a Pisot unit with (F)
is always 1.

3. Finiteness for x3 − ax2 + x− 1 and x3 − ax2 − 1

Put f1(x) = x3−ax2 +x−1 with a ≥ 2 and f2(x) = x3−ax2−1 with a ≥ 1. This
section, as a whole, is devoted to a proof of the property (F) for Pisot numbers β
whose irreducible polynomial is fi (i = 1, 2). Denote by D(f) the discriminant of
f ∈ Z[x]. Then we have D(f1) = −4a3 +a2 +18a−31 and D(f2) = −4a3−27. So
the Pisot numbers β defined by fi (i = 1, 2) are not totally real, since D(fi) < 0.
Let β′ be a fixed complex conjugate of β and β′′ = β′. Designate x′ and x′′ for the
corresponding conjugates of x ∈ Q(β). When a ≤ 9, the assertion of Theorem 3 is
proved by the direct application of Theorem 2. Thus we will show, the property
(F) holds for the Pisot numbers corresponding to fi (i = 1, 2) when a ≥ 10. To
prove this, we modify slightly the statement of Theorem 2. Since x ∈ Fin(β) is
equivalent to βx ∈ Fin(β), it suffices to show that each element of

{
x ∈ Z[β]

∣∣∣∣ 0 < x ≤ βm, |x′| ≤ [β]|β′|m
1− |β′|

}

has finite beta expansion in base β with any fixed integer m. Hereafter we put
m = 2. Each x ∈ Z[β] has a form x = x0+x1β+x2β

2 with integers xi (i = 0, 1, 2).
Thus we shall prove finiteness for the numbers x0 + x1β + x2β

2 with

0 < x0 + x1β + x2β
2 ≤ β2, (2)

|x0 + x1β
′ + x2(β′)2| ≤ [β]|β′|2

1− |β′| ≤
1

1−√β
. (3)
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Writing these inequalities in a matrix form, we have

(x0, x1, x2)




1 1 1
β β′ β′′

β2 (β′)2 (β′′)2


 = (u0, u1, u2),

with u0 ≤ β2 and |ui| ≤ 1/(1−√β) (i = 1, 2). Multiplying the inverse matrix,

(x0, x1, x2) =
(u0, u1, u2)√
|D(fi)|




β′β′′(β′′ − β′) −(β′′)2 + (β′)2 β′′ − β′

−ββ′′(β′′ − β) (β′′)2 − β2 −β′′ + β
ββ′(β′ − β) −(β′)2 + β2 β′ − β




with i = 1, 2. Thus we have the estimate

|x0| ≤ 1√
|D(fi)|

{
β2|β′β′′(β′′ − β′)|+ 2

1− β−1/2
|ββ′′(β′′ − β)|

}

≤ 1√
|D(fi)|

{
2
√

β +
2(1 + β)

√
β

1− β−1/2

}
,

with i = 1, 2. The right hand side is 1 + O(a−1/2). By a more precise estimate,
this inequality yields |x0| ≤ 1 when a ≥ 8. For x2, we have

|x2| ≤ 1√
|D(fi)|

{
β2|β′′ − β′|+ 2

1− β−1/2
|β′′ − β|

}

≤ 1√
|D(fi)|

{
2β

√
β +

2(1 + β)
1− β−1/2

}
.

In the same manner, this estimate implies |x2| ≤ 1 when a ≥ 6. Thus it suffices
to show the finiteness when |x0| ≤ 1 and |x2| ≤ 1. We shall prove the assertion by
classifying into three case according to the value of x2.

Case x2 = −1. By the inequality (2), β−β−1 < x1 < 2β +β−1. Thus we have

1
1− β−1/2

> |x0 + x1β
′ − (β′)2| >

(
β − 1

β

)
β−1/2 − 1− 1

β
,

by (3). This inequality holds only when β ≤ 7.57. This implies that a ≤ 7 which
contradicts with the assumption.

Case x2 = 0. By (2), −1/β ≤ x1 ≤ β + 1/β. Since x1 is an integer, we have
0 ≤ x1 < [β] + 1. Put x0 = 0. When x1 ≤ [β], x0 + x1β + x2β

2 = x1β itself is a
beta expansion. If x1 = [β]+1. Then by (3), we have 1/(1−β−1/2) ≥ |x0+x1β

′| ≥√
β − 1. This inequality can not be true when a ≥ 8. Next we assume x0 = 1. If

x1 ≤ [β]− 1, then x0 + x1β + x2β
2 = 1 + x1β itself satisfies (1). When x1 ≥ [β],

we have 1/(1 − β−1/2) ≥ |x0 + x1β
′| ≥ [β]/

√
β − 1 ≥ √

β − 1/
√

β − 1. This can
not be the case when a ≥ 10. Assume x0 = −1. Then (2) implies x1 ≥ 1. Thus
we can carry down the digit by d(1, β) in Lemma 2:

−1 + x1β = x1, (−1) =

{
(x1 − 1), ([β]− 1).[β], 0, 1 if i = 1
(x1 − 1), ([β]− 1).0, 1 if i = 2,
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to obtain finite beta expansion. Thus we have completed the proof for x2 = 0.
Case x2 = 1. Similarly we see, −β − x0/β ≤ x1 ≤ 1/β. Since x1 is an integer,

we have −β − x0/β ≤ x1 ≤ 0. First, suppose x0 = 0. We only have to consider
−[β] ≤ x1 6= 0. Then we have

x1β + β2 = 1, x1, 0. =

{
([β] + x1), [β].0, 1 if i = 1
([β] + x1), 0.1 if i = 2

by d(1, β) in Lemma 2. Condition (1) is fulfilled in either case. Next we assume
x0 = 1. Hence −[β]− 1 ≤ x1 ≤ 0. If x1 = 0 then x0 + x1β + x2β

2 = 1 + β2 itself
is a beta expansion. When −[β]− 1 ≤ x1 ≤ −1, we see

1 + x1β + β2 = 1, x1, 1. =

{
([β] + x1 + 1), 0, 1 if i = 1
([β] + x1), 0.1 if i = 2.

Then we see these are the desired finite beta expansions. Herein we used the
irreducible polynomial x3 = ([β]+1)x2−x+1 instead of d(1, β) in the above case
i = 1. The case when i = 2 and x1 = −[β] − 1 can be abandoned, because the
right hand side is negative.

Lastly we consider the case when x0 = −1. Now we see −[β] ≤ x1 ≤ 0.
Similarly as above,

1, x1, (−1). =

{
([β] + x1), ([β]− 1).0, 1 if i = 1
([β] + x1), (−1).1 = ([β] + x1 − 1), ([β]− 1).1, 1 if i = 2,

which shows the assertion. Here when i = 2 and x1 = −[β], the value of the right
hand side is negative, which can be omitted. The proof of the property (F) for
polynomials fi (i = 1, 2) is now completed.

4. Finiteness for x3 − ax2 − (a + 1)x− 1

To complete our proof of Theorem 3, we shall treat the final case f(x) = x3 −
ax2 − (a + 1)x − 1 for a ≥ 0 in this section. We will prove property (F) for
these polynomials with a ≥ 15, while other cases are shown by Theorem 2. The
discriminant D(f) is a4 + 2a3 − 5a2 − 6a − 23 which is positive for a ≥ 3. Thus
we have to treat totally real cases. Let β′ and β′′ be the conjugates of β with
−1 < β′ < β′′ < 0 < 1 < β. We need precise asymptotic behaviors of these
conjugates when a →∞ (or β →∞):
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Lemma 3. If a ≥ 8,

2 ≤ (β′ + 1− 1
β

)β3 ≤ 2.5 (4)

−1.5 ≤ (β′′ +
1
β

+
1
β2

)β3 ≤ −1

Proof. Since β3 − aβ2 − (a + 1)β − 1 = 0, we have the expansion

a = β − 1− 1
β2

+
1
β3

− 1
β4

+
1
β5

+ . . . . (5)

On the other hand, as β′ + β′′ = a − β and β′β′′ = 1/β, we have β′ = (a −
β −

√
(a− β)2 − 4/β)/2 and β′′ = (a − β +

√
(a− β)2 − 4/β)/2. Putting the

truncated inequality of (5):

β − 1− 1
β2

+
4

5β3
≤ a ≤ β − 1− 1

β2
+

1
β3

into these expressions, we can derive the desired estimations. ut

Now we use Theorem 2 in a modified form as in the previous section. Then it
suffices to show the finiteness for the elements x0 + x1β + x2β

2 which satisfy:

0 < x0 + x1β + x2β
2 < β2 (6)

|x0 + x1β
′ + x2(β′)2| <

[β]|β′|2
1− |β′|

|x0 + x1β
′′ + x2(β′′)2| <

[β]|β′′|2
1− |β′′| .

Applying Lemma 3, we see

|x0 + x1β
′ + x2(β′)2| < β2 (7)

and

|x0 + x1β
′′ + x2(β′′)2| < 1

β

(
1 +

4
β

)
for β ≥ 8. (8)

Hereafter we shall prove the required finiteness for the solutions (x0, x1, x2) of
these three inequalities (6),(7) and (8). Now we show

Lemma 4. If a ≥ 7, then |x0 + x2| ≤ 2.

Proof. Putting the estimates (6) and (8) together,
∣∣∣∣
(

β

β′′
− 1

)
x0 +

(
ββ′′ − β2

)
x2

∣∣∣∣ ≤ β2 +
1
|β′′|

(
1 +

4
β

)
. (9)



10 Shigeki Akiyama

Now we derive estimates of x0, by the method of the previous section. Then
we have, for β ≥ 8,

(x0, x1, x2) =
(u0, u1, u2)√

D(f)




β′β′′(β′′ − β′) −(β′′)2 + (β′)2 β′′ − β′

−ββ′′(β′′ − β) (β′′)2 − β2 −β′′ + β
ββ′(β′ − β) −(β′)2 + β2 β′ − β


 ,

with |u0| ≤ β2, |u1| ≤ β2 and |u2| ≤ β−1(1 + 4/β). Applying Lemma 3, we can
show

|x0| ≤ β3 + β2 + 4.5β + 7√
D(f)

.

By using (5), this implies

|x0| ≤ β + 3 for a ≥ 7. (10)

Now, by (9),

∣∣ββ′′ − β2
∣∣ |x0 + x2| ≤ |x0|

∣∣∣∣ββ′′ − β2 − β

β′′
+ 1

∣∣∣∣ +
1
|β′′|

(
1 +

4
β

)
+ β2. (11)

By using Lemma 3, we see
∣∣ββ′′ − β2

∣∣ ≥ 1 + β2, (12)

∣∣∣∣ββ′′ − β2 − β

β′′
+ 1

∣∣∣∣ ≤ 1 + β, (13)

and
1
|β′′|

(
1 +

4
β

)
+ β2 ≤ β2 + β + 4. (14)

Combining (10), (11),(12),(13) and (14), we have

|x0 + x2| ≤ 2 +
5β + 5
β2 + 1

,

which shows |x0 + x2| ≤ 2 for β ≥ 8. ut

We will prove the key lemma.

Lemma 5. Let (ξ0, ξ1, ξ2) and (η0, η1, η2) be the solutions of three inequalities
(6),(7) and (8) with ξ0 = η0. Then we have |ξ1 − η1| ≤ 2 and |ξ2 − η2| ≤ 1 for
a ≥ 12.

Proof. By (8),

∣∣(ξ1 − η1)β′′ + (ξ2 − η2)(β′′)2
∣∣ ≤ 2

β

(
1 +

4
β

)
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Since ξ0 = η0, using Lemma 4, we have |ξ2 − η2| ≤ 4. Now we have, by Lemma 3,

|(ξ1 − η1)β′′| ≤ 2
β

+
13
β2

,

for β ≥ 10. Again by Lemma 3,

|ξ1 − η1| < 2 +
12
β

.

Thus we see |ξ1 − η1| ≤ 2 for β ≥ 13. Now (6) implies

|(ξ1 − η1)β + (ξ2 − η2)β2| ≤ β2.

Thus we have |ξ2 − η2| ≤ 1 + 2/β. As the left hand side is an integer, we see the
assertion. ut

Lemma 5 provides us with a way to find out all solutions of inequalities (6),(7)
and (8), by constructing a certain special kind of solutions. Actually, we can
construct a series of solutions, denoted by fundamental solutions, by the next
lemma.

Lemma 6. The elements m(a + β−1) for m = 1, 2, . . . , [β] and β2 + m(a + β−1)
for m = −1,−2, . . . ,−[β] satisfy the desired three inequalities (6),(7) and (8) for
a ≥ 9

For the simplicity of notations, we use the term ’fundamental solutions’ to
express above 2[β] elements, although we are on the way to prove it.

Proof. First note a + β−1 is also a unit. In fact, we have

−(x− a)3f(1/(x− a)) = x3 + (1− 2a)x2 + (a2 − a)x− 1.

The inequality (6) for fundamental solutions is obviously fulfilled. By (4), we see

|a + (β′)−1| ≤ a− 1,

which implies (7) for fundamental solutions. Since

a + (β′′)−1 = (a + β−1)−1(a + (β′)−1)−1,

we can easily get the estimate

|a + (β′′)−1| ≤ 1
β2

(
1 +

4
β

)
,

for a ≥ 9, by using Lemma 3. This estimation is enough to show (8) for funda-
mental solutions. ut

These fundamental solutions have concrete and beautiful finite beta expansions
in base β.
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Lemma 7. We have

k(a + β−1) = −β +
k−1∑

i=0

(k − i)β−2i+1 +
k∑

i=1

(a− k + i)β−2i+2 + β−2k+1

= (k − 1)(a− k + 1).(k − 1)(a− k + 2)(k − 2)(a− k + 3) . . . , 2, (a− 1), 1, a, 1

and

β2 − k(a + β−1) =
(a− k + 1)(k − 1).(a− k + 2)(k − 2)(a− k + 3) . . . , 3, (a− 2), 2, (a− 1), 1, a, 1

for k = 1, 2, . . . , [β]. Right hand sides of these expansions satisfies (1).

Proof. Note for any k,

k(a + β−1) = (k − 1)β + (a− k + 1) + β−1 + (k − 1)(a + β−1)β−2.

Using this recursively, we get the first formula. One can show the second one, by
using

β−1(β2 − k(a + β−1)) + (k − 1)β = k(a + β−1).

ut

The reader might feel a little bit curious on a sudden appearance of a + β−1.
Let ε = (a + β−1)−1. Then we see |ε| < 1, |ε′| < 1 and |ε′′| > 1. Hence β and
a+β−1 are independent units of our totally real field Q(β). Actually, one can show
by Theorem 2 of K.Minemura [10], they form a system of fundamental units of
this field, when D(f) is positive and square free. Note that we need slight change
of notations like 1/θ = 1 + 1/β. R.Okazaki kindly informed me of this fact. Now
we can proceed into the last step.

Proof of finiteness for x3 − ax2 − (a + 1)x − 1. We need a precise variant of
(10). In the notation of the proof of Lemma 4, we have

|u1| ≤ β2 (1− 1/β + 2.5/β2)2

1− 2/β2

≤ β2(1− 2/β + 8/β2).

Thus we have, by Lemma 3,

|x0| ≤ β3 − β2 + 10.5β + 12√
D(f)

,

for β ≥ 10. By using (5), this implies

|x0| ≤ β for a ≥ 15. (15)

Noting a + β−1 = β2 − aβ − 1 and combining (15), Lemma 5 and Lemma 6, it
suffices to show the finiteness for

x0(a + β−1) + κ1β + κ2β
2,
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with 0 ≤ x0 ≤ β and

β2 + x0(a + β−1) + κ1β + κ2β
2,

with −1 ≥ x0 ≥ −β. Here κi (i = 1, 2) are integers with |κ1| ≤ 2, |κ2| ≤ 1. We
classify the proof in several cases.

Case 1 ≤ x0 ≤ [β]− 2. We only have to show the finiteness when the value

x0(a + β−1) + κ1β + κ2β
2,

is positive. Thus we see κ2 ≥ 0. In fact, by Lemma 7 and Lemma 2, x0(a+β−1)+
κ1β ≤ (x0+1)β+(a−x0+1)+. . . is clearly less than β2 when x0+1 ≤ a = [β]−1.
First, let κ2 = 0. When κ1 = 0, 1, 2 then x0(a + β−1) + κ1β = (x0 − 1 + κ1)β +
(a− x0 + 1) + . . . is a beta expansion. If κ1 is negative, then the same expression
satisfies (1) unless x0(a + β−1) + κ1β is negative.

Second, let κ2 = 1. By using (6), we see κ1 = −1 or −2 and x0 ≤ 2. But
x0 = 2 implies κ1 = −2 and |2(a + (β′′)−1) − 2β′′ + (β′′)2| > (1 + 4/β)/β which
contradicts with (8). When x0 = 1. Then

a + β−1 + κ1β + β2 = (a + 1 + κ1)β + a + β−1 + aβ−2 + β−3

is a finite beta expansion.
Case x0 = [β]−1 = a. When κ2 > 0, a(a+β−1)+κ1β+κ2β

2 does not satisfy
(6). First, let κ2 = 0. Then

a(a + β−1) + κ1β = (a− 1 + κ1)β + 1 + (a− 1)β−1 + . . .

is a beta expansion when κ1 ≤ 1. When κ1 = 2, it is greater than β2 which does
not satisfy (6).

Second, let κ2 = −1. When κ1 < 2, the value a(a+β−1)+κ1β−β2 is negative.
Thus we only have to consider the case κ1 = 2. Noting the identity:

a(a + β−1) + 2β − β2 = 1 + β−2((a− 2)(a + β−1) + β),

we see the right hand side has finite beta expansion, by Lemma 7.
Case x0 = [β] = a + 1. We can show this case almost similarly. By (6), we

have κ2 ≤ 0. First, let κ2 = 0. Then we have κ1 ≤ 0, by (6). Then

(a + 1)(a + β−1) + κ1β

has a finite expansion by Lemma 7. Second, let κ2 = −1. This implies κ1 > 0 by
(6). When κ1 = 1, we have an identity:

(a + 1)(a + β−1) + β − β2 = β−2((a− 1)(a + β−1) + β),

which shows the finiteness by Lemma 7. Adding β to both hand sides we get the
finiteness for κ1 = 2.

Case x0 = 0. We see κ2 ≥ 0. One can check the desired finiteness very easily.
Now we treat the case when x0 < 0. The proof is almost parallel to the case

when x0 > 0. Thus we will omit the details.

Case −1 ≥ x0 ≥ −[β] + 2 = −a + 1. One see κ2 ≤ 0 by (6). First, let κ2 = 0.
Then we see, by Lemma 7, β2 +x0(a+β−1)+κ1β has finite beta expansion unless
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it is greater than β2. Second, let κ2 = −1. Then we see κ1 > 0 and x0 = −1 or −2.
But when κ1 = 2, there are no cases which satisfy (8). Thus we have to consider
κ1 = 1 and x0 = −1. Then β − (a + β−1) = aβ−1 + β−2 is a beta expansion.

Case x0 = −[β] − 1 = −a. We have κ2 ≥ 0. First, let κ2 = 0. Then we
see the expansion generated by Lemma 7 satisfies (1) when κ1 ≥ −1. The value
β2 − a(a + β−1) + κ1β is negative when κ1 = −2. Second, let κ2 = 1. Then we
only have to show when κ1 = −2. Considering the identity:

2β2 − a(a + β−1)− 2β = aβ + (a− 1) + β−2(β2 − (a− 2)(a + β−1)),

we get the assertion.
Case x0 = −[β] = −a−1. We see κ2 ≥ 0. First, let κ2 = 0. When κ1 < 0, the

value β2−(a+1)(a+β−1)+κ1β is negative. If κ1 ≥ 0, it has finite beta expansion
by Lemma 7. Second, let κ2 = 1. Then we have κ1 < 0. When κ1 = −1, then the
identity:

2β2 − (a + 1)(a + β−1)− β = aβ + a + β−2(β2 − (a− 1)(a + β−1))

assures the finiteness. Subtracting β from both sides, we get the assertion for
κ1 = −2. ut

Thus we have completed the proof of Theorem 3.

5. Proofs of Propositions

Proof of Proposition 1. In [6], it is shown, if Z≥0 ⊂ Fin(β) then β is a Pisot
number or a Salem number. Thus our task is to show that the later case is absurd.
Suppose that β is a Salem number and Z≥0 ⊂ Fin(β). In [15], it is proved that β
is a root of the reciprocal polynomial. This shows β has just one conjugate 1/β
in the interior of the unit circle and deg β ≥ 4. Let k be a positive integer and
consider the beta expansion:

1 + [βk] = βk +
q∑

i=1

a−iβ
−i,

with a−q 6= 0. Let η be a conjugate of β with |η| = 1. Taking conjugate of both
sides,

1 + [βk] = ηk +
q∑

i=1

a−iη
−i.

Considering the absolute value, we see

1 + [βk] ≤ 1 +
q∑

i=1

a−i ≤ 1 + q[β].
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On the other hand, by the conjugate map which send β to 1/β,

1 + [βk] = β−k +
q∑

i=1

a−iβ
i > βq.

This implies k ≥ q. Summing up, we have [βk]/[β] ≤ k. This inequality can not
be true when k is large. ut

To prove Proposition 2, we need to a result on the tiling for the Pisot units
which are not necessary assumed to have property (F). Note Z[β−1] = Z[β], since
β is a unit.

Let Fr be the set of words corresponding to the fractional parts of elements
of Z[β]≥0. By the result of [16] and [5], the fractional parts appeared in Fr are
eventually periodic. Moreover the fractional parts are eventually classified into
finite types. Recall that Z[β]≥0 is dense in Rm−1 by Proposition 1 of [3]. Thus we
have

Rm−1 =
⊔

ω∈Fr

Φ(Sω).

It can be shown, for any element ω ∈ Fr, Tω = Inn(Tω) and ∂(Tω) is nowhere
dense in Rm−1, which is a generalization of the results of [3]. Further the m − 1
dimensional Lebesgue measure of the ∂(Tω) is 0, which will be shown in [4].

Proof of Proposition 2. Suppose that the origin is an inner point of T. and x ∈
Z[β−1] has infinite beta expansion. Consider the sequence βkx (k = 0, 1, . . . ). By
the definition of the beta expansion, we see each βkx has infinite beta expansion
as well. But the sequence Φ(βkx) (k = 0, 1, . . . ) converges to the origin as β is
a Pisot number. Since βkx is an accumulation point of Inn(Tω) with ω 6=′ .′, the
origin can not be an inner point of T. Here we used the fact that the boundary of
the tile is nowhere dense in Rm−1 ut
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