TOPOLOGICAL PROPERTIES OF TWO-DIMENSIONAL NUMBER SYSTEMS

SHIGEKI AKIYAMA AND JÖRG M. THUSWALDNER

ABSTRACT. In the two dimensional real vector space \mathbb{R}^2 one can define analogs of the well-known q-adic number systems. In these number systems a matrix M plays the role of the base number q. In the present paper we study the so-called fundamental domain \mathcal{F} of such number systems. This is the set of all elements of \mathbb{R}^2 having zero integer part in their "M-adic" representation. It was proved by Kátai and Kőrnyei, that \mathcal{F} is a compact set and certain translates of it form a tiling of the \mathbb{R}^2 . We construct points, where three different tiles of this tiling coincide. Furthermore, we prove the connectedness of \mathcal{F} and give a result on the structure of its inner points.

1. INTRODUCTION

In this paper we use the following notations: \mathbb{R} , \mathbb{Q} , \mathbb{Z} and \mathbb{N} denote the set of real numbers, rational numbers, integers and positive integers, respectively. If $x \in \mathbb{R}$ we will write $\lfloor x \rfloor$ for the largest integer less than or equal to x. λ will denote the 2-dimensional Lebesgue measure. Furthermore, we write ∂A for the boundary of the set A and int(A) for its interior. $diag(\lambda_1, \lambda_2)$ denotes a 2 × 2 diagonal matrix with diagonal elements λ_1 and λ_2 .

Let $q \ge 2$ be an integer. Then each positive integer n has a unique q-adic representation of the shape $n = \sum_{k=0}^{H} a_k q^k$ with $a_k \in \{0, 1, \ldots, q-1\}$ $(0 \le k \le H)$ and $a_H \ne 0$ for $H \ne 0$. These q-adic number systems have been generalized in various ways. In the present paper we deal with analogs of these number systems in the 2-dimensional real vector space, that emerge from number systems in quadratic number fields. The first major step in the investigation of number systems in number fields was done by Knuth [13], who studied number systems with negative bases as well as number systems in the ring of Gaussian integers. Meanwhile, Kátai, Kovács, Pethő and Szabó invented a general notion of number systems in rings of integers of number fields, the so-called *canonical number systems* (cf. for instance [10, 11, 12, 15]). We recall their definition.

Let K be a number field with ring of integers Z_K . For an algebraic integer $b \in Z_K$ define $\mathcal{N} = \{0, 1, \ldots, |N(b)| - 1\}$, where N(b) denotes the norm of b over \mathbb{Q} . The pair (b, \mathcal{N}) is called a *canonical number system* if any $\gamma \in Z_K$ admits a representation of the shape

$$\gamma = c_0 + c_1 b + \dots + c_H b^H,$$

where $c_k \in \mathcal{N}$ $(1 \leq k \leq H)$ and $c_H \neq 0$ for $H \neq 0$.

Date: June 11, 1999.

¹⁹⁹¹ Mathematics Subject Classification. 11A63.

Key words and phrases. Radix representation, Connectedness.

These number systems resemble a natural generalization of q-adic number systems to number fields. Each of these number systems gives rise to a number system in the *n*dimensional real vector space. Since we are only interested in the 2-dimensional case, we construct these number systems only for this case. Consider a canonical number system (b, \mathcal{N}) in a quadratic number field K with ring of integers Z_K . Let $p_b(x) = x^2 + Ax + B$ be the minimal polynomial of b. It is known, that for bases of canonical number systems $-1 \leq A \leq B \geq 2$ holds (cf. [10, 11, 12]). Now consider the embedding $\Phi : K \to \mathbb{R}^2$, $\alpha_1 + \alpha_2 b \mapsto (\alpha_1, \alpha_2)$, where $\alpha_1, \alpha_2 \in \mathbb{Q}$. Kovacs [14] proved, that $\{1, b\}$ forms an integral basis of Z_K . Thus we have $\Phi(Z_K) = \mathbb{Z}^2$. Furthermore, note that $\Phi(bz) = M\Phi(z)$ with

$$M = \begin{pmatrix} 0 & -B \\ 1 & -A \end{pmatrix}.$$

Since the elements of \mathcal{N} are rational integers, for each $c \in \mathcal{N}$, $\Phi(c) = (c, 0)^T$. Summing up we see, that $(M, \Phi(\mathcal{N}))$ forms a number system in the two dimensional real vector space in the following sense (cf. also [8], where some properties of these number systems are studied). Each $g \in \mathbb{Z}^2$ has a unique representation of the form

$$g = d_0 + M d_1 + \ldots + M^H d_H,$$

with $d_k \in \Phi(\mathcal{N})$ $(1 \leq k \leq H)$ and $d_H \neq (0,0)^T$ for $H \neq 0$. These number systems form the object of this paper. In particular, we want to study the so-called *fundamental domains* of these number systems. The *fundamental domain* of a number system $(M, \Phi(\mathcal{N}))$ is defined by

$$\mathcal{F} = \left\{ z \, \middle| \, z = \sum_{j \ge 1} M^{-j} d_j, \, d_j \in \Phi(\mathcal{N}) \right\}.$$

Sloppily spoken, \mathcal{F} contains all elements of \mathbb{R}^2 , with integer part zero in their "*M*-adic" representation. In Figure 1 the fundamental domain corresponding to the *M*-adic representations arising from the Gaussian integer -1 + i is depicted. This so-called "twin dragon" was studied extensively by Knuth in his book [13].

FIGURE 1. The fundamental domain of a number system

Fundamental domains of number systems have been studied in various papers. Kátai and Kőrnyei [9] proved, that \mathcal{F} is a compact set that tesselates the plane in the following way.

$$\bigcup_{g \in \mathbb{Z}^2} (\mathcal{F} + g) = \mathbb{R}^2 \quad \text{where} \quad \lambda((\mathcal{F} + g_1) \cap (\mathcal{F} + g_2)) = 0 \quad (g_1, g_2 \in \mathbb{Z}^2; g_1 \neq g_2).$$
(1)

$$S := \{ g \in \mathbb{Z}^2 \setminus (0,0)^T \, | \, \mathcal{F} \cap (\mathcal{F} + g) \neq \emptyset \}.$$

Then by (1) the boundary of \mathcal{F} has the representation

$$\partial \mathcal{F} = \bigcup_{g \in S} (\mathcal{F} \cap (\mathcal{F} + g)).$$
⁽²⁾

Hence, the boundary of \mathcal{F} is the set of all elements of \mathcal{F} , that are contained in $\mathcal{F} + g$ for a certain $g \neq (0,0)^T$. Of course, $\partial \mathcal{F}$ may contain points, that belong to \mathcal{F} and two other different translates of \mathcal{F} . These points we call *vertices* of \mathcal{F} . Thus the set of vertices of \mathcal{F} is defined by

$$V := \{ z \in \mathcal{F} \mid z \in (\mathcal{F} + g_1) \cap (\mathcal{F} + g_2), \, g_1, g_2 \in \mathbb{Z}^2; \, g_1 \neq g_2, g_1 \neq 0, g_2 \neq 0 \}.$$

In Section 2 we study the set of vertices of \mathcal{F} . It turns out, that, apart from one exceptional case, \mathcal{F} has at least 6 vertices. In some cases we derive that V is an infinite or even uncountable set. In Section 3 we prove the connectedness of \mathcal{F} and show that each element of \mathcal{F} , which has a finite M-adic expansion, is an inner point of \mathcal{F} .

2. Vertices of the Fundamental Domain $\mathcal F$

In this section we give some results on the set of vertices V of \mathcal{F} . For number systems emerging from Gaussian integers, similar results have been established with help of different methods in Gilbert [3]. We start with the definition of useful abbreviations. Let

$$g = M^{-H_1} d_{-H_1} + \dots + M^{H_2} d_{H_2}$$
(3)

be the *M*-adic representation of g. Note, that the digits d_j $(-H_1 \leq j \leq H_2)$ are of the shape $d_j = (c_j, 0)^T \in \Phi(\mathcal{N})$. Thus for the expansion (3) we will write

$$g = c_{H_2}c_{H_2-1}\ldots c_1c_0.c_{-1}\ldots c_{H_1}.$$

If the string $c_1 \ldots c_H$ occurs j times in an M-adic representation, then we write $[c_1 \ldots c_H]_j$. If a representation is ultimately periodic, i.e. a string $c_1 \ldots c_H$ occurs infinitely often, we write $[c_1 \ldots c_H]_{\infty}$. First we show, that for A > 0 any fundamental domain \mathcal{F} contains at least 6 vertices.

Theorem 2.1. Let $(M, \Phi(\mathcal{N}))$ be a number system in \mathbb{R}^2 , which is induced by the base b of a canonical number system. Let $p_b(x) = x^2 + Ax + B$ with A > 0 be the minimal polynomial of b. Then the set of vertices V of the fundamental domain \mathcal{F} of this number system contains the points

$$P_1 = 0.[0(A-1)(B-1)]_{\infty}, \quad P_2 = 0.[(A-1)(B-1)0]_{\infty}, \\ P_3 = 0.[0(B-1)(B-A)]_{\infty}, \quad P_4 = 0.[(B-1)(B-A)0]_{\infty}, \\ P_5 = 0.[(B-1)0(A-1)]_{\infty}, \quad P_6 = 0.[(B-A)0(B-1)]_{\infty}.$$

Depending on the cases A = 1, 1 < A < B and A = B, the points P_j $(1 \le j \le 6)$ belong to the following translates $\mathcal{F} + w$ of \mathcal{F} .

	values of w for $1 < A < B$	values of w for $A = B$
P_1	0, 1, 1A	0, 1, 1(A-1)10
P_2	0, 1(A-1), 1A(B-1)	0, 1(A-1), 1(A-1)10(A-1)
P_3	0, 1A, 1(A-1)	0, 1(A-1), 1(A-1)10
P_4	0, 1A(B-1), 1(A-1)(B-A)	0, 1A(A-1), 1(A-1)0
P_5	0, 1(A-1)(B-A+1), 1	0, 1(A-1)1, 1
P_6	0, 1(A-1)(B-A), 1(A-1)(B-A+1)	0, 1(A-1)1, 1(A-1)0

The case A = 1 is very similar to the case 1 < A < B; just replace the representation 1(A-1)(B-A+1) by 11(B-1)0 in the above table.

Remark 2.1. Note, that we have $0 < A \le B \ge 2$. Hence the digits of the 6 points indicated in Theorem 2.1 are all admissible.

Proof of the theorem. We will prove that each of the 6 points P_1, \ldots, P_6 is contained in three different translates of \mathcal{F} , as indicated in the statement of the theorem. First we consider the point P_1 . Write $\overline{x} = -x$. By using $b^2 + Ab + B = 0$, we see that

$$0.1(A-1)(B-A)\overline{B} = 0.1[(A-1)(B-A)(\overline{B-1})]_{\infty} = 0$$
(4)

are formal representations of zero. Adding the second representation for 0 given in (4) twice, we have

$$P_{1} = 0.[0(A-1)(B-1)]_{\infty} + 1.[(A-1)(B-A)\overline{(B-1)}]_{\infty}$$

= 1.[(A-1)(B-1)0]_{\mathcal{\mathcal{m}}}
= 1.[(A-1)(B-1)0]_{\mathcal{m}} + 1(A-1).[(B-A)\overline{(B-1)}(A-1)]_{\mathcal{m}}
= 1A.[(B-1)0(A-1)]_{\mathcal{m}}.

For A < B this yields

$$P_1 \in \mathcal{F} \cap (\mathcal{F} + 1) \cap (\mathcal{F} + 1A).$$

For A = B the last expansion $1A \cdot [(B-1)0(A-1)]_{\infty}$ is not admissible since A > B - 1. In order to settle this case we use the first representation of zero given in (4) to get $1A = 1B = 1B + 1(B-1)0\overline{B} = 1(A-1)10$. As a result, we have

$$P_1 \in \mathcal{F} \cap (\mathcal{F} + 1) \cap (\mathcal{F} + 1(A - 1)10)$$

for A = B. Since $P_2 = MP_1$, we get the desired results also for P_2 . Now we treat

$$P_3 = 0.[0(B-1)(B-A)]_{\infty}.$$

In the same way as before, we get, using both representations of zero in (4)

$$P_{3} = 0.[0(B-1)(B-A)]_{\infty} + 1A.B - 0.1[(A-1)(B-A)\overline{(B-1)}]_{\infty}$$

= $1A.[(B-1)(B-A)0]_{\infty}$
= $1A.[(B-1)(B-A)0]_{\infty} - 1.[(A-1)(B-A)\overline{(B-1)}]_{\infty}$
= $1(A-1).[(B-A)0(B-1)]_{\infty},$

which implies

$$P_3 \in \mathcal{F} \cap (\mathcal{F} + 1A) \cap (\mathcal{F} + 1(A - 1))$$

for A < B and

j

$$P_3 \in \mathcal{F} \cap (\mathcal{F} + 1(A - 1)10) \cap (\mathcal{F} + 1(A - 1))$$

for A = B. Since \mathcal{F} permits an involution $\varphi : x \to \sum_{j \ge 1} M^{-j} (B-1,0)^T - x$, \mathcal{F} is symmetric with respect to the center $\frac{1}{2} \sum_{j \ge 1} M^{-j} (B-1,0)^T$. For $w \in \mathbb{Z}^2$ this map sends each $\mathcal{F} + w$ to $\mathcal{F} - w$. Thus we have

$$\begin{aligned} \varphi(\mathcal{F}+1) &= \mathcal{F}+1A(B-1), \\ \varphi(\mathcal{F}+1(A-1)) &= \begin{cases} \mathcal{F}+1(A-1)(B-A+1) & \text{for } A>1, \\ \mathcal{F}+11(B-1)0 & \text{for } A=1, \end{cases} \\ \varphi(\mathcal{F}+1A) &= \mathcal{F}+1(A-1)(B-A), \end{aligned}$$

for A < B and

$$\begin{aligned} \varphi(\mathcal{F}+1) &= \mathcal{F}+1(A-1)10(A-1) \\ \varphi(\mathcal{F}+1(A-1)) &= \mathcal{F}+1(A-1)1, \\ \varphi(\mathcal{F}+1(A-1)10) &= \mathcal{F}+1(A-1)0, \end{aligned}$$

for A = B. Furthermore, it is easy to see, that $\varphi(P_1) = P_4$, $\varphi(P_2) = P_5$ and $\varphi(P_3) = P_6$ Thus also P_4 , P_5 and P_6 are vertices of \mathcal{F} that are contained in the translates of \mathcal{F} indicated in the statement of the theorem.

In the case A = 0 it is easy to see that \mathcal{F} is a square. It has exactly 4 vertices. These are the "usual" vertices of the square. Thus we only have to deal with the case A = -1. We will folmulate the corresponding result as a corollary.

Corollary 2.1. Let the same settings as in Theorem 2.1 be in force, but assume now, that A = -1. Then the following table gives 6 points P_j $(1 \le j \le 6)$, that are contained in the set of vertices V of \mathcal{F} . Furthermore, we give the translates $\mathcal{F} + w$, to which P_j belongs.

P_j	translates w, for which $P_j \in \mathcal{F} + w$
$0.[0(B-1)(B-1)(B-1)00]_{\infty}$	0, 10(B-1), 10(B-1)(B-1)
$0.[000(B-1)(B-1)(B-1)]_{\infty}$	0, 1, 10
$0.[00(B-1)(B-1)(B-1)0]_{\infty}$	0, 10, 10(B-1)
$0[(B-1)000(B-1)(B-1)]_{\infty}$	0, 1, 10(B-1)(B-1)1
$0[(B-1)(B-1)000(B-1)]_{\infty}$	0, 10(B-1)(B-1), 10(B-1)(B-1)1
$0.[(B-1)(B-1)(B-1)000]_{\infty}$	0, 10(B-1)(B-1)0, 10(B-1)(B-1)1

Proof. Let $M_1 = \begin{pmatrix} 0 & -B \\ 1 & -1 \end{pmatrix}$ and $M_2 = \begin{pmatrix} 0 & -B \\ 1 & 1 \end{pmatrix}$ be bases of number systems in \mathbb{R}^2 and let \mathcal{F} and \mathcal{F} be the fundamental domains corresponding to M_1 and M_2 respectively. We know

 \mathcal{F}_1 and \mathcal{F}_2 be the fundamental domains corresponding to M_1 and M_2 , respectively. We know the vertices of \mathcal{F}_1 from Theorem 2.1 and will construct the vertices of \mathcal{F}_2 from it. To this matter let $M_1 = G_1 \operatorname{diag}(b_1, b_2) G_1^{-1}$. It is easy to see, that then $M_2 = G_2 \operatorname{diag}(-b_1, -b_2) G_2^{-1}$ with $G_2 = \operatorname{diag}(-1, 1) G_1$. Now suppose, that $\sum_{k\geq 1} M_1^{-k} a_j \in \mathcal{F}_1 \cap \mathcal{F}_1 + (v_1, v_2)^T \cap \mathcal{F}_1 +$ $(w_1, w_2)^T$ with $v_1, v_2, w_1, w_2 \in \mathbb{Z}$ is a vertex of \mathcal{F}_1 . Using the fact, that $G_1^{-1}a_k = -G_2^{-1}a_k$ for $a_k \in \mathcal{M}$ and setting $d = 0.[0(B-1)]_{\infty}$ we easily derive that

$$Q := \sum_{k \ge 1} (-1)^{k+1} M_2^{-k} a_k + d \in \operatorname{diag}(-1,1) (\mathcal{F}_1 \cap \mathcal{F}_1 + (v_1, v_2)^T \cap \mathcal{F}_1 + (w_1, w_2)^T) + d$$
(5)

Observe, that by the selection of d, Q has an admissible M_2 -adic representation with integer part zero. Thus $Q \in \mathcal{F}_2$. Since any element of \mathcal{F}_2 can be constructed from elements of \mathcal{F}_1 in the same way we conclude, that $\mathcal{F}_2 = \text{diag}(-1,1)\mathcal{F}_1 + d$. But with that (5) reads $Q \in \mathcal{F}_2 \cap \mathcal{F}_2 + (-v_1, v_2)^T \cap \mathcal{F}_2 + (-w_1, w_2)^T$. Thus Q is a vertex of \mathcal{F}_2 . The representations in the table above, can now easily be obtained from the results for A = 1 in Theorem 2.1.

The following corollary is an immediate consequence of Theorem 2.1 and Corollary 2.1. Corollary 2.2. For 1 < A < B we have

 $S \supset \{1, 1A, 1(A-1), 1A(B-1), 1(A-1)(B-A), 1(A-1)(B-A+1)\},$ for A = B $S \supset \{1, 1(A-1)10, 1(A-1), 1(A-1)10(A-1), 1(A-1)0, 1(A-1)1\},$

while for A = 1

holds.

Remark 2.2. Note, that " \supset " may be replaced by "=" in Corollary 2.2 if 2A < B+3. This is shown for the Gaussian case in [16]. For arbitrary quadratic number fields this fact can be proved in a similar way.

Theorem 2.2. Let the same settings as in Theorem 2.1 be in force. If 2A = B + 3 then \mathcal{F} has infinitely many vertices.

Proof. Set
$$K = B - A + 1 = \frac{B-1}{2}$$
. Then, using $b^2 + Ab + B = 0$, we get $(j \ge 0)$

$$0 = \sum_{\substack{k=2\\ k=2}}^{\infty} (-1)^k \left(M^{-k+2} (1,0)^T + M^{-k+1} (A,0)^T + M^{-k} (B,0)^T \right)$$

= 1.(A-1)[K\overline{K}]_\overline\$. (6)

Here we set $\overline{x} = -x$, as before. We will show, that the points

$$Q_j = 1A.[(B-1)0(A-1)]_{2j}(B-1)0[K]_{\infty} \quad (j \in \mathbb{N})$$
(7)

are vertices of \mathcal{F} . Therefore we need the representation (6). With help of this representation we define the following representations of zero.

$$N_1 := 1(A-1).[KK]_{\infty} = 0,$$

$$N_2 := 1.(A-1)[K\overline{K}]_{\infty} = 0,$$

$$X_j := 0.[0]_j 1AB = 0 \quad (j \ge 0).$$

In the sequel we write kX_j ($k \in \mathbb{Z}$) if we want to multiply each digit of the representation X_j by k. Furthermore, addition and subtraction of representations is always meant digit-wise. After these definitions we define the following, more complicated representations of zero.

$$Z_{1}(j) := N_{1} + \sum_{k=1}^{j} (X_{6k-1} - 2X_{6k-2} + 2X_{6k-3} - X_{6k-4}) + (1.AB) - 2(1A.B)$$

$$= \overline{1A} [(\overline{B} - \overline{1})(A - 1)(B - A)]_{2j} (\overline{B} - \overline{1})(A - 1)[K\overline{K}]_{\infty},$$

$$Z_{2}(j) := N_{2} + \sum_{k=1}^{j} (-X_{6k-3} + 2X_{6k-4} - 2X_{6k-5} + X_{6k-6}) - (1A.B)$$

$$= \overline{1}(\overline{A} - \overline{1}) . (\overline{B} - \overline{A})[(B - 1)(\overline{A} - \overline{1})(\overline{B} - \overline{A})]_{2j-1} (B - 1)(\overline{A} - \overline{1})\overline{K}[K\overline{K}]_{\infty}$$

Finally, we observe, that for $j \in \mathbb{N}$

$$Q_{j} = Q_{j} + Z_{1}(j)$$

= 0.[0(A - 1)(B - 1)]_{2j}0(A - 1)[(B - 1)0]_{\infty}
= Q_{j} + Z_{2}(j)
= 1.(A - 1)[(B - 1)0(A - 1)]_{2j-1}(B - 1)0KK[0(B - 1)]_{\infty},

and this implies $Q_j \in V$. It remains to show, that the elements Q_j , $j \geq 1$, are pairwise different. This follows from the following observation. Select $k \in \mathbb{N}$ arbitrary and let $j_1, j_2 \leq k$. Suppose, that Q_{j_1} and Q_{j_2} are represented by the representation (7) for $j = j_1$ and $j = j_2$, respectively. Then $Q_{j_1} = Q_{j_2}$ if and only if $M^{6k+2}Q_{j_1} = M^{6k+2}Q_{j_2}$. For $k \geq \max(j_1, j_2)$, $M^{6k+2}Q_{j_1}$ and $M^{6k+2}Q_{j_2}$ have the same digit string $[0(B-1)]_{\infty}$ after the comma. Hence, they can only be equal, if their integer parts are equal. But since $(M, \Phi(\mathcal{N}))$ is a number system, this can only be the case, if the digit strings of their integer parts are the same. This implies $j_1 = j_2$. So we have proved, that the points Q_j are pairwise different for $j \leq k$. Since k can be selected arbitrary, the result follows. Thus we found infinitely many different vertices of \mathcal{F} .

Theorem 2.3. Let the same settings as in Theorem 2.1 be in force. If 2A > B + 3 then \mathcal{F} has uncountably many vertices.

Proof. Set K = B - A + 1 and $\xi = \lfloor (B - 1)/2 \rfloor$. As $\xi + K, \xi - K \in \mathcal{N}$, by using (6), we see that

$$0.[\xi]_{\infty} = 1(A-1).[(\xi+K)(\xi-K)]_{\infty}$$

= 1(A-1)K.[(\xi-K)(\xi+K)]_{\infty}

Thus $0.[\xi]_{\infty}$ is a vertex of \mathcal{F} . Fix an integer k, such that all eigenvalues of M^k are greater than 2 (such an integer exists, since the eigenvalues of M are all greater than 1). This implies, that the representations $0.c_1[0]_k c_2[0]_k c_3[0]_k c_4 \dots$, $c_j \in \{0,1\}$ $(j \geq 1)$ represent pairwise different elements of \mathbb{R}^2 for different $\{0,1\}$ sequences $\{c_j\}_{j\geq 1}$. Because $\xi + K < B - 1$, each of the uncountably many representations

$$0.[\xi]_{\infty} + 0.c_1[0]_k c_2[0]_k c_3[0]_k c_4 \dots \qquad (c_j \in \{0,1\}, j \ge 1)$$

corresponds to a vertex of \mathcal{F} . Since they are pairwise different, the theorem is proved. \Box

3. Connectedness and Inner Points of the Fundamental Domain ${\cal F}$

In this section we will show, that the fundamental domain \mathcal{F} is arcwise connected. To establish this result, we will apply a general theorem due to Hata (cf. [5, 6]) which assures arcwise connectedness for a large class of sets. The second result of this section is devoted to the structure of the inner points of \mathcal{F} . In particular, we prove, that each point with finite *M*-adic representation is an inner point of \mathcal{F} . In this section we will use the notation

$$\mathcal{F}_k := \left\{ z \, \Big| \, z = \sum_{j=1}^k M^{-j} a_j, \, a_j \in \Phi(\mathcal{N}) \right\} \qquad (k \in \mathbb{N}).$$

We start with the connectedness result.

Theorem 3.1. Let $(M, \Phi(\mathcal{N}))$ be a number system in \mathbb{R}^2 , which is induced by the base b of a canonical number system in a quadratic number field. Then the fundamental domain \mathcal{F} of $(M, \Phi(\mathcal{N}))$ is arcwise connected.

Proof. It is an easy consequence of the definition of \mathcal{F} , that

$$\mathcal{F} = \bigcup_{g \in \Phi(\mathcal{N})} M^{-1}(\mathcal{F} + g).$$
(8)

Furthermore, Theorem 2.1 implies that $\mathcal{F} \cap (\mathcal{F} + (1,0)^T) \neq \emptyset$. Thus the sets contained in the union of (8) form a *chain* in the sense that $(\mathcal{F} + g) \cap (\mathcal{F} + (g + (1,0)^T)) \neq \emptyset$ for $g \in \Phi(\mathcal{N}) \setminus (B-1,0)^T$. Thus \mathcal{F} fulfills the conditions being necessary for the application of a theorem of Hata, namely [5, Theorem 4.6]. This theorem yields the arcwise connectedness of \mathcal{F} .

Now we prove the result on the inner points of \mathcal{F} . Note, that the existence of inner points is an immediate consequence of [9, Theorem 1].

Theorem 3.2. Let $(M, \Phi(\mathcal{N}))$ be a number system in \mathbb{R}^2 , which is induced by the base b of a canonical number system in a quadratic number field. Then for each $k \in \mathbb{N}$ we have

$$\mathcal{F}_k \subset \operatorname{int}(\mathcal{F}).$$

Proof. First we will show, that 0 is an inner point of \mathcal{F} . Suppose, that 0 is contained in the boundary of \mathcal{F} . Then by (2) there exists a representation of zero of the shape

$$0 = c_{H_1}c_{H_1-1}\dots c_1c_0.c_{-1}c_{-2}\dots$$
(9)

This representation implies $0 \in \mathcal{F} + c_{H_1}c_{H_1-1}\ldots c_1c_0$. If we multiply (9) by M^j for $j \in \mathbb{N}$ arbitrary, we conclude, that $0 \in \mathcal{F} + c_{H_1}c_{H_1-1}\ldots c_1c_0c_{-1}\ldots c_{-j}$ for each $j \in \mathbb{N}$. Hence, 0 is contained in infinitely many different translates of \mathcal{F} . But since \mathcal{F} is a compact set this is a contradiction to (1). Thus $0 \in \operatorname{int}(\mathcal{F})$.

Now fix $k \in \mathbb{N}$ and $g \in \mathcal{F}_k$. Then $0 \in \operatorname{int}(\mathcal{F})$ implies, that $g \in \operatorname{int}(M^{-k}\mathcal{F}+g)$. The result now follows from the representation

$$\mathcal{F} = \bigcup_{g \in \mathcal{F}_k} (M^{-k} \mathcal{F} + g).$$

There is a direct alternative proof of this theorem by using the methods of [1] and [2]. In these papers a similar result for the tiling generated by Pisot number systems is shown.

References

- [1] S. Akiyama. Self affine tiling and pisot numeration system. In K. Győry and S. Kanemitsu, editors, *Number Theory and its Applications*. Kluwer Academic Publishers. to appear.
- [2] S. Akiyama and T. Sadahiro. A self-similar tiling generated by the minimal pisot number. Acta Math. Info. Univ. Ostraviensis, 6:9–26, 1998.
- [3] W. J. Gilbert. Complex numbers with three radix representations. Can. J. Math., 34:1335–1348, 1982.
- [4] W. J. Gilbert. Complex bases and fractal similarity. Ann. sc. math. Quebec, 11(1):65–77, 1987.
- [5] M. Hata. On the structure of self-similar sets. Japan J. Appl. Math, 2:381–414, 1985.
- [6] M. Hata. Topological aspects of self-similar sets and singular functions. In J. Bélair and S. Dubuc, editors, *Fractal Geometry and Analysis*, pages 255–276, Netherlands, 1991. Kluwer Academic Publishers.
- [7] S. Ito. On the fractal curves induced from the complex radix expansion. Tokyo J. Math., 12(2):299–320, 1989.
- [8] I. Kátai. Number systems and fractal geometry. *preprint*.
- [9] I. Kátai and I. Kőrnyei. On number systems in algebraic number fields. Publ. Math. Debrecen, 41(3–4):289–294, 1992.
- [10] I. Kátai and B. Kovács. Kanonische Zahlensysteme in der Theorie der Quadratischen Zahlen. Acta Sci. Math. (Szeged), 42:99–107, 1980.
- [11] I. Kátai and B. Kovács. Canonical number systems in imaginary quadratic fields. Acta Math. Hungar., 37:159–164, 1981.
- [12] I. Kátai and J. Szabó. Canonical number systems for complex integers. Acta Sci. Math. (Szeged), 37:255–260, 1975.
- [13] D. E. Knuth. The Art of Computer Programming, Vol 2: Seminumerical Algorithms. Addison Wesley, London, 3rd edition, 1998.
- B. Kovács. Canonical number systems in algebraic number fields. Acta Math. Hungar., 37:405–407, 1981.
- [15] B. Kovács and A. Pethő. Number systems in integral domains, especially in orders of algebraic number fields. Acta Sci. Math. (Szeged), 55:286–299, 1991.
- [16] W. Müller, J. M. Thuswaldner, and R. F. Tichy. Fractal properties of number systems. preprint.
- [17] J. M. Thuswaldner. Fractal dimension of sets induced by bases of imaginary quadratic fields. Math. Slovaca, 48(4):365–371, 1998.

Shigeki Akiyama	Jörg M. Thuswaldner
Department of Mathematics	Department of Mathematics and Statistics
Faculty of Science	Montanuniversität Leoben
Niigata University	Franz-Josef-Str. 18
NIIGATA	LEOBEN
JAPAN	AUSTRIA