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Abstract. In the two dimensional real vector space R2 one can define analogs of the
well-known q-adic number systems. In these number systems a matrix M plays the role of
the base number q. In the present paper we study the so-called fundamental domain F of
such number systems. This is the set of all elements of R2 having zero integer part in their
“M-adic” representation. It was proved by Kátai and Kőrnyei, that F is a compact set and
certain translates of it form a tiling of the R2. We construct points, where three different
tiles of this tiling coincide. Furthermore, we prove the connectedness of F and give a result
on the structure of its inner points.

1. Introduction

In this paper we use the following notations: R, Q, Z and N denote the set of real numbers,
rational numbers, integers and positive integers, respectively. If x ∈ R we will write bxc
for the largest integer less than or equal to x. λ will denote the 2-dimensional Lebesgue
measure. Furthermore, we write ∂A for the boundary of the set A and int(A) for its interior.
diag(λ1, λ2) denotes a 2× 2 diagonal matrix with diagonal elements λ1 and λ2.

Let q ≥ 2 be an integer. Then each positive integer n has a unique q-adic representation
of the shape n =

∑H
k=0 akq

k with ak ∈ {0, 1, . . . , q − 1} (0 ≤ k ≤ H) and aH 6= 0 for
H 6= 0. These q-adic number systems have been generalized in various ways. In the present
paper we deal with analogs of these number systems in the 2-dimensional real vector space,
that emerge from number systems in quadratic number fields. The first major step in the
investigation of number systems in number fields was done by Knuth [13], who studied
number systems with negative bases as well as number systems in the ring of Gaussian
integers. Meanwhile, Kátai, Kovács, Pethő and Szabó invented a general notion of number
systems in rings of integers of number fields, the so-called canonical number systems (cf. for
instance [10, 11, 12, 15]). We recall their definition.

Let K be a number field with ring of integers ZK . For an algebraic integer b ∈ ZK define
N = {0, 1, . . . , |N(b)| − 1}, where N(b) denotes the norm of b over Q. The pair (b,N ) is
called a canonical number system if any γ ∈ ZK admits a representation of the shape

γ = c0 + c1b + · · ·+ cHbH ,

where ck ∈ N (1 ≤ k ≤ H) and cH 6= 0 for H 6= 0.
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These number systems resemble a natural generalization of q-adic number systems to
number fields. Each of these number systems gives rise to a number system in the n-
dimensional real vector space. Since we are only interested in the 2-dimensional case, we
construct these number systems only for this case. Consider a canonical number system
(b,N ) in a quadratic number field K with ring of integers ZK . Let pb(x) = x2 + Ax + B
be the minimal polynomial of b. It is known, that for bases of canonical number systems
−1 ≤ A ≤ B ≥ 2 holds (cf. [10, 11, 12]). Now consider the embedding Φ : K → R2,
α1 + α2b 7→ (α1, α2), where α1, α2 ∈ Q. Kovacs [14] proved, that {1, b} forms an integral
basis of ZK . Thus we have Φ(ZK) = Z2. Furthermore, note that Φ(bz) = MΦ(z) with

M =

(
0 −B
1 −A

)
.

Since the elements of N are rational integers, for each c ∈ N , Φ(c) = (c, 0)T . Summing up
we see, that (M, Φ(N )) forms a number system in the two dimensional real vector space in
the following sense (cf. also [8], where some properties of these number systems are studied).
Each g ∈ Z2 has a unique representation of the form

g = d0 + Md1 + . . . + MHdH ,

with dk ∈ Φ(N ) (1 ≤ k ≤ H) and dH 6= (0, 0)T for H 6= 0. These number systems form the
object of this paper. In particular, we want to study the so-called fundamental domains of
these number systems. The fundamental domain of a number system (M, Φ(N )) is defined
by

F =



z

∣∣∣∣ z =
∑

j≥1

M−jdj, dj ∈ Φ(N )



 .

Sloppily spoken, F contains all elements of R2, with integer part zero in their “M -adic”
representation. In Figure 1 the fundamental domain corresponding to the M -adic represen-
tations arising from the Gaussian integer −1 + i is depicted. This so-called “twin dragon”
was studied extensively by Knuth in his book [13].

Figure 1. The fundamental domain of a number system

Fundamental domains of number systems have been studied in various papers. Kátai and
Kőrnyei [9] proved, that F is a compact set that tesselates the plane in the following way.

⋃

g∈Z2

(F + g) = R2 where λ((F + g1) ∩ (F + g2)) = 0 (g1, g2 ∈ Z2; g1 6= g2). (1)
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Furthermore, we want to mention, that the boundary of F has fractal dimension. Its
Hausdorff and box counting dimension has been calculated by Gilbert [4], Ito [7], Müller-
Thuswaldner-Tichy [16] and Thuswaldner [17]. In the present paper we are interested in
topological properties of F . Before we give a survey on our results we shall define some
basic objects. Let S be the set of all translates of F , that “touch” F , i.e.

S := {g ∈ Z2 \ (0, 0)T | F ∩ (F + g) 6= ∅}.
Then by (1) the boundary of F has the representation

∂F =
⋃

g∈S

(F ∩ (F + g)). (2)

Hence, the boundary of F is the set of all elements of F , that are contained in F + g for
a certain g 6= (0, 0)T . Of course, ∂F may contain points, that belong to F and two other
different translates of F . These points we call vertices of F . Thus the set of vertices of F
is defined by

V := {z ∈ F | z ∈ (F + g1) ∩ (F + g2), g1, g2 ∈ Z2; g1 6= g2, g1 6= 0, g2 6= 0}.
In Section 2 we study the set of vertices of F . It turns out, that, apart from one exceptional
case, F has at least 6 vertices. In some cases we derive that V is an infinite or even
uncountable set. In Section 3 we prove the connectedness of F and show that each element
of F , which has a finite M -adic expansion, is an inner point of F .

2. Vertices of the Fundamental Domain F
In this section we give some results on the set of vertices V of F . For number systems

emerging from Gaussian integers, similar results have been established with help of different
methods in Gilbert [3]. We start with the definition of useful abbrevations. Let

g = M−H1d−H1 + · · ·+ MH2dH2 (3)

be the M -adic representation of g. Note, that the digits dj (−H1 ≤ j ≤ H2) are of the
shape dj = (cj, 0)T ∈ Φ(N ). Thus for the expansion (3) we will write

g = cH2cH2−1 . . . c1c0.c−1 . . . cH1 .

If the string c1 . . . cH occurs j times in an M -adic representation, then we write [c1 . . . cH ]j.
If a representation is ultimately periodic, i.e. a string c1 . . . cH occurs infinitely often, we
write [c1 . . . cH ]∞. First we show, that for A > 0 any fundamental domain F contains at
least 6 vertices.

Theorem 2.1. Let (M, Φ(N )) be a number system in R2, which is induced by the base b of
a canonical number system. Let pb(x) = x2 +Ax+B with A > 0 be the minimal polynomial
of b. Then the set of vertices V of the fundamental domain F of this number system contains
the points

P1 = 0.[0(A− 1)(B − 1)]∞, P2 = 0.[(A− 1)(B − 1)0]∞,
P3 = 0.[0(B − 1)(B − A)]∞, P4 = 0.[(B − 1)(B − A)0]∞,
P5 = 0.[(B − 1)0(A− 1)]∞, P6 = 0.[(B − A)0(B − 1)]∞.
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Depending on the cases A = 1, 1 < A < B and A = B, the points Pj (1 ≤ j ≤ 6) belong to
the following translates F + w of F .

values of w for 1 < A < B values of w for A = B
P1 0, 1, 1A 0, 1, 1(A− 1)10
P2 0, 1(A− 1), 1A(B − 1) 0, 1(A− 1), 1(A− 1)10(A− 1)
P3 0, 1A, 1(A− 1) 0, 1(A− 1), 1(A− 1)10
P4 0, 1A(B − 1), 1(A− 1)(B − A) 0, 1A(A− 1), 1(A− 1)0
P5 0, 1(A− 1)(B − A + 1), 1 0, 1(A− 1)1, 1
P6 0, 1(A− 1)(B − A), 1(A− 1)(B − A + 1) 0, 1(A− 1)1, 1(A− 1)0

The case A = 1 is very similar to the case 1 < A < B; just replace the representation
1(A− 1)(B − A + 1) by 11(B − 1)0 in the above table.

Remark 2.1. Note, that we have 0 < A ≤ B ≥ 2. Hence the digits of the 6 points indicated
in Theorem 2.1 are all admissible.

Proof of the theorem. We will prove that each of the 6 points P1, . . . , P6 is contained
in three different translates of F , as indicated in the statement of the theorem. First we
consider the point P1. Write x = −x. By using b2 + Ab + B = 0, we see that

0.1(A− 1)(B − A)B = 0.1[(A− 1)(B − A)(B − 1)]∞ = 0 (4)

are formal representations of zero. Adding the second representation for 0 given in (4) twice,
we have

P1 = 0.[0(A− 1)(B − 1)]∞ + 1.[(A− 1)(B − A)(B − 1)]∞
= 1.[(A− 1)(B − 1)0]∞
= 1.[(A− 1)(B − 1)0]∞ + 1(A− 1).[(B − A)(B − 1)(A− 1)]∞
= 1A.[(B − 1)0(A− 1)]∞.

For A < B this yields

P1 ∈ F ∩ (F + 1) ∩ (F + 1A).

For A = B the last expansion 1A.[(B − 1)0(A − 1)]∞ is not admissible since A > B − 1.
In order to settle this case we use the first representation of zero given in (4) to get 1A =
1B = 1B + 1(B − 1)0B = 1(A− 1)10. As a result, we have

P1 ∈ F ∩ (F + 1) ∩ (F + 1(A− 1)10)

for A = B. Since P2 = MP1, we get the desired results also for P2. Now we treat

P3 = 0.[0(B − 1)(B − A)]∞.

In the same way as before, we get, using both representations of zero in (4)

P3 = 0.[0(B − 1)(B − A)]∞ + 1A.B − 0.1[(A− 1)(B − A)(B − 1)]∞
= 1A.[(B − 1)(B − A)0]∞
= 1A.[(B − 1)(B − A)0]∞ − 1.[(A− 1)(B − A)(B − 1)]∞
= 1(A− 1).[(B − A)0(B − 1)]∞,
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which implies
P3 ∈ F ∩ (F + 1A) ∩ (F + 1(A− 1))

for A < B and

P3 ∈ F ∩ (F + 1(A− 1)10) ∩ (F + 1(A− 1))

for A = B. Since F permits an involution ϕ : x → ∑
j≥1 M−j(B−1, 0)T −x, F is symmetric

with respect to the center 1
2

∑
j≥1 M−j(B − 1, 0)T . For w ∈ Z2 this map sends each F + w

to F − w. Thus we have

ϕ(F + 1) = F + 1A(B − 1),

ϕ(F + 1(A− 1)) =




F + 1(A− 1)(B − A + 1) for A > 1,

F + 11(B − 1)0 for A = 1,

ϕ(F + 1A) = F + 1(A− 1)(B − A),

for A < B and

ϕ(F + 1) = F + 1(A− 1)10(A− 1),

ϕ(F + 1(A− 1)) = F + 1(A− 1)1,

ϕ(F + 1(A− 1)10) = F + 1(A− 1)0,

for A = B. Furthermore, it is easy to see, that ϕ(P1) = P4, ϕ(P2) = P5 and ϕ(P3) = P6

Thus also P4, P5 and P6 are vertices of F that are contained in the translates of F indicated
in the statement of the theorem. ¤

In the case A = 0 it is easy to see that F is a square. It has exactly 4 vertices. These are
the “usual” vertices of the square. Thus we only have to deal with the case A = −1. We
will folmulate the corresponding result as a corollary.

Corollary 2.1. Let the same settings as in Theorem 2.1 be in force, but assume now, that
A = −1. Then the following table gives 6 points Pj (1 ≤ j ≤ 6), that are contained in the
set of vertices V of F . Furthermore, we give the translates F + w, to which Pj belongs.

Pj translates w, for which Pj ∈ F + w
0.[0(B − 1)(B − 1)(B − 1)00]∞ 0, 10(B − 1), 10(B − 1)(B − 1)
0.[000(B − 1)(B − 1)(B − 1)]∞ 0, 1, 10
0.[00(B − 1)(B − 1)(B − 1)0]∞ 0, 10, 10(B − 1)
0.[(B − 1)000(B − 1)(B − 1)]∞ 0, 1, 10(B − 1)(B − 1)1
0.[(B − 1)(B − 1)000(B − 1)]∞ 0, 10(B − 1)(B − 1), 10(B − 1)(B − 1)1
0.[(B − 1)(B − 1)(B − 1)000]∞ 0, 10(B − 1)(B − 1)0, 10(B − 1)(B − 1)1

Proof. Let M1 =

(
0 −B
1 −1

)
and M2 =

(
0 −B
1 1

)
be bases of number systems in R2and let

F1 and F2 be the fundamental domains corrresponding to M1 and M2, respectively. We know
the vertices of F1 from Theorem 2.1 and will construct the vertices of F2 from it. To this
matter let M1 = G1diag(b1, b2)G

−1
1 . It is easy to see, that then M2 = G2diag(−b1,−b2)G

−1
2

with G2 = diag(−1, 1)G1. Now suppose, that
∑

k≥1 M−k
1 aj ∈ F1 ∩ F1 + (v1, v2)

T ∩ F1 +
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(w1, w2)
T with v1, v2, w1, w2 ∈ Z is a vertex of F1. Using the fact, that G−1

1 ak = −G−1
2 ak

for ak ∈M and setting d = 0.[0(B − 1)]∞ we easily derive that

Q :=
∑

k≥1

(−1)k+1M−k
2 ak + d ∈ diag(−1, 1)(F1 ∩ F1 + (v1, v2)

T ∩ F1 + (w1, w2)
T ) + d

(5)

Observe, that by the selection of d, Q has an admissible M2-adic representation with integer
part zero. Thus Q ∈ F2. Since any element of F2 can be constructed from elements of
F1 in the same way we conclude, that F2 = diag(−1, 1)F1 + d. But with that (5) reads
Q ∈ F2 ∩F2 + (−v1, v2)

T ∩F2 + (−w1, w2)
T . Thus Q is a vertex of F2. The representations

in the table above, can now easily be obtained from the results for A = 1 in Theorem 2.1.
¤

The following corollary is an immediate consequence of Theorem 2.1 and Corollary 2.1.

Corollary 2.2. For 1 < A < B we have

S ⊃ {1, 1A, 1(A− 1), 1A(B − 1), 1(A− 1)(B − A), 1(A− 1)(B − A + 1)},
for A = B

S ⊃ {1, 1(A− 1)10, 1(A− 1), 1(A− 1)10(A− 1), 1(A− 1)0, 1(A− 1)1},
while for A = 1

S ⊃ {1, 10, 10(B − 1), 10(B − 1)(B − 1), 10(B − 1)(B − 1)0, 10(B − 1)(B − 1)1}
holds.

Remark 2.2. Note, that “⊃” may be replaced by “=” in Corollary 2.2 if 2A < B +3. This
is shown for the Gaussian case in [16]. For arbitrary quadratic number fields this fact can
be proved in a similar way.

Theorem 2.2. Let the same settings as in Theorem 2.1 be in force. If 2A = B + 3 then F
has infinitely many vertices.

Proof. Set K = B − A + 1 = B−1
2

. Then, using b2 + Ab + B = 0, we get (j ≥ 0)

0 =
∞∑

k=2

(−1)k
(
M−k+2(1, 0)T + M−k+1(A, 0)T + M−k(B, 0)T

)

= 1.(A− 1)[KK]∞.

(6)

Here we set x = −x, as before. We will show, that the points

Qj = 1A.[(B − 1)0(A− 1)]2j(B − 1)0[K]∞ (j ∈ N) (7)

are vertices of F . Therefore we need the representation (6). With help of this representation
we define the following representations of zero.

N1 := 1(A− 1).[KK]∞ = 0,

N2 := 1.(A− 1)[KK]∞ = 0,

Xj := 0.[0]j1AB = 0 (j ≥ 0).
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In the sequel we write kXj (k ∈ Z) if we want to multiply each digit of the representation Xj

by k. Furthermore, addition and subtraction of representations is always meant digit-wise.
After these definitions we define the following, more complicated representations of zero.

Z1(j) := N1 +
j∑

k=1

(X6k−1 − 2X6k−2 + 2X6k−3 −X6k−4) + (1.AB)− 2(1A.B)

= 1A.[(B − 1)(A− 1)(B − A)]2j(B − 1)(A− 1)[KK]∞,

Z2(j) := N2 +
j∑

k=1

(−X6k−3 + 2X6k−4 − 2X6k−5 + X6k−6)− (1A.B)

= 1(A− 1).(B − A)[(B − 1)(A− 1)(B − A)]2j−1(B − 1)(A− 1)K[KK]∞.

Finally, we observe, that for j ∈ N
Qj = Qj + Z1(j)

= 0.[0(A− 1)(B − 1)]2j0(A− 1)[(B − 1)0]∞
= Qj + Z2(j)

= 1.(A− 1)[(B − 1)0(A− 1)]2j−1(B − 1)0KK[0(B − 1)]∞,

and this implies Qj ∈ V . It remains to show, that the elements Qj, j ≥ 1, are pairwise
different. This follows from the following observation. Select k ∈ N arbitrary and let
j1, j2 ≤ k. Suppose, that Qj1 and Qj2 are represented by the representation (7) for j = j1

and j = j2, respectively. Then Qj1 = Qj2 if and only if M6k+2Qj1 = M6k+2Qj2 . For
k ≥ max(j1, j2), M6k+2Qj1 and M6k+2Qj2 have the same digit string [0(B − 1)]∞ after the
comma. Hence, they can only be equal, if their integer parts are equal. But since (M, Φ(N ))
is a number system, this can only be the case, if the digit strings of their integer parts are
the same. This implies j1 = j2. So we have proved, that the points Qj are pairwise different
for j ≤ k. Since k can be selected arbitrary, the result follows. Thus we found infinitely
many different vertices of F . ¤

Theorem 2.3. Let the same settings as in Theorem 2.1 be in force. If 2A > B + 3 then F
has uncountably many vertices.

Proof. Set K = B −A + 1 and ξ = b(B − 1)/2c. As ξ + K, ξ −K ∈ N , by using (6), we
see that

0.[ξ]∞ = 1(A− 1).[(ξ + K)(ξ −K)]∞
= 1(A− 1)K.[(ξ −K)(ξ + K)]∞.

Thus 0.[ξ]∞ is a vertex of F . Fix an integer k, such that all eigenvalues of Mk are greater than
2 (such an integer exists, since the eigenvalues of M are all greater than 1). This implies,
that the representations 0.c1[0]kc2[0]kc3[0]kc4 . . . , cj ∈ {0, 1} (j ≥ 1) represent pairwise
different elements of R2 for different {0, 1} sequences {cj}j≥1. Because ξ + K < B− 1, each
of the uncountably many representations

0.[ξ]∞ + 0.c1[0]kc2[0]kc3[0]kc4 . . . (cj ∈ {0, 1}, j ≥ 1)
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corresponds to a vertex of F . Since they are pairwise different, the theorem is proved. ¤

3. Connectedness and Inner Points of the Fundamental Domain F
In this section we will show, that the fundamental domain F is arcwise connected. To

establish this result, we will apply a general theorem due to Hata (cf. [5, 6]) which assures
arcwise connectedness for a large class of sets. The second result of this section is devoted
to the structure of the inner points of F . In particular, we prove, that each point with finite
M -adic representation is an inner point of F . In this section we will use the notation

Fk :=



z

∣∣∣∣ z =
k∑

j=1

M−jaj, aj ∈ Φ(N )



 (k ∈ N).

We start with the connectedness result.

Theorem 3.1. Let (M, Φ(N )) be a number system in R2, which is induced by the base b of
a canonical number system in a quadratic number field. Then the fundamental domain F
of (M, Φ(N )) is arcwise connected.

Proof. It is an easy consequence of the definition of F , that

F =
⋃

g∈Φ(N )

M−1(F + g). (8)

Furthermore, Theorem 2.1 implies that F ∩ (F + (1, 0)T ) 6= ∅. Thus the sets contained
in the union of (8) form a chain in the sense that (F + g) ∩ (F + (g + (1, 0)T )) 6= ∅ for
g ∈ Φ(N ) \ (B− 1, 0)T . Thus F fulfills the conditions being necessary for the application of
a theorem of Hata, namely [5, Theorem 4.6]. This theorem yields the arcwise connectedness
of F . ¤

Now we prove the result on the inner points of F . Note, that the existence of inner points
is an immediate consequence of [9, Theorem 1].

Theorem 3.2. Let (M, Φ(N )) be a number system in R2, which is induced by the base b of
a canonical number system in a quadratic number field. Then for each k ∈ N we have

Fk ⊂ int(F).

Proof. First we will show, that 0 is an inner point of F . Suppose, that 0 is contained in
the boundary of F . Then by (2) there exists a representation of zero of the shape

0 = cH1cH1−1 . . . c1c0.c−1c−2 . . . . (9)

This representation implies 0 ∈ F + cH1cH1−1 . . . c1c0. If we multiply (9) by M j for j ∈ N
arbitrary, we conclude, that 0 ∈ F + cH1cH1−1 . . . c1c0c−1 . . . c−j for each j ∈ N. Hence, 0 is
contained in infinitely many different translates of F . But since F is a compact set this is
a contradiction to (1). Thus 0 ∈ int(F).
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Now fix k ∈ N and g ∈ Fk. Then 0 ∈ int(F) implies, that g ∈ int(M−kF + g). The result
now follows from the representation

F =
⋃

g∈Fk

(M−kF + g).

¤

There is a direct alternative proof of this theorem by using the methods of [1] and [2]. In
these papers a similar result for the tiling generated by Pisot number systems is shown.
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