TOPOLOGICAL PROPERTIES OF TWO-DIMENSIONAL NUMBER SYSTEMS

SHIGEKI AKIYAMA AND JÖRG M. THUSWALDNER

Abstract

In the two dimensional real vector space \mathbb{R}^{2} one can define analogs of the well-known q-adic number systems. In these number systems a matrix M plays the role of the base number q. In the present paper we study the so-called fundamental domain \mathcal{F} of such number systems. This is the set of all elements of \mathbb{R}^{2} having zero integer part in their "M-adic" representation. It was proved by Kátai and Környei, that \mathcal{F} is a compact set and certain translates of it form a tiling of the \mathbb{R}^{2}. We construct points, where three different tiles of this tiling coincide. Furthermore, we prove the connectedness of \mathcal{F} and give a result on the structure of its inner points.

1. Introduction

In this paper we use the following notations: $\mathbb{R}, \mathbb{Q}, \mathbb{Z}$ and \mathbb{N} denote the set of real numbers, rational numbers, integers and positive integers, respectively. If $x \in \mathbb{R}$ we will write $\lfloor x\rfloor$ for the largest integer less than or equal to x. λ will denote the 2 -dimensional Lebesgue measure. Furthermore, we write ∂A for the boundary of the set A and $\operatorname{int}(A)$ for its interior. $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$ denotes a 2×2 diagonal matrix with diagonal elements λ_{1} and λ_{2}.

Let $q \geq 2$ be an integer. Then each positive integer n has a unique q-adic representation of the shape $n=\sum_{k=0}^{H} a_{k} q^{k}$ with $a_{k} \in\{0,1, \ldots, q-1\}(0 \leq k \leq H)$ and $a_{H} \neq 0$ for $H \neq 0$. These q-adic number systems have been generalized in various ways. In the present paper we deal with analogs of these number systems in the 2-dimensional real vector space, that emerge from number systems in quadratic number fields. The first major step in the investigation of number systems in number fields was done by Knuth [13], who studied number systems with negative bases as well as number systems in the ring of Gaussian integers. Meanwhile, Kátai, Kovács, Pethő and Szabó invented a general notion of number systems in rings of integers of number fields, the so-called canonical number systems (cf. for instance $[10,11,12,15])$. We recall their definition.

Let K be a number field with ring of integers Z_{K}. For an algebraic integer $b \in Z_{K}$ define $\mathcal{N}=\{0,1, \ldots,|N(b)|-1\}$, where $N(b)$ denotes the norm of b over \mathbb{Q}. The pair (b, \mathcal{N}) is called a canonical number system if any $\gamma \in Z_{K}$ admits a representation of the shape

$$
\gamma=c_{0}+c_{1} b+\cdots+c_{H} b^{H}
$$

where $c_{k} \in \mathcal{N}(1 \leq k \leq H)$ and $c_{H} \neq 0$ for $H \neq 0$.

These number systems resemble a natural generalization of q-adic number systems to number fields. Each of these number systems gives rise to a number system in the n dimensional real vector space. Since we are only interested in the 2 -dimensional case, we construct these number systems only for this case. Consider a canonical number system (b, \mathcal{N}) in a quadratic number field K with ring of integers Z_{K}. Let $p_{b}(x)=x^{2}+A x+B$ be the minimal polynomial of b. It is known, that for bases of canonical number systems $-1 \leq A \leq B \geq 2$ holds (cf. [10, 11, 12]). Now consider the embedding $\Phi: K \rightarrow \mathbb{R}^{2}$, $\alpha_{1}+\alpha_{2} b \mapsto\left(\alpha_{1}, \alpha_{2}\right)$, where $\alpha_{1}, \alpha_{2} \in \mathbb{Q}$. Kovacs [14] proved, that $\{1, b\}$ forms an integral basis of Z_{K}. Thus we have $\Phi\left(Z_{K}\right)=\mathbb{Z}^{2}$. Furthermore, note that $\Phi(b z)=M \Phi(z)$ with

$$
M=\left(\begin{array}{ll}
0 & -B \\
1 & -A
\end{array}\right) .
$$

Since the elements of \mathcal{N} are rational integers, for each $c \in \mathcal{N}, \Phi(c)=(c, 0)^{T}$. Summing up we see, that $(M, \Phi(\mathcal{N}))$ forms a number system in the two dimensional real vector space in the following sense (cf. also [8], where some properties of these number systems are studied). Each $g \in \mathbb{Z}^{2}$ has a unique representation of the form

$$
g=d_{0}+M d_{1}+\ldots+M^{H} d_{H}
$$

with $d_{k} \in \Phi(\mathcal{N})(1 \leq k \leq H)$ and $d_{H} \neq(0,0)^{T}$ for $H \neq 0$. These number systems form the object of this paper. In particular, we want to study the so-called fundamental domains of these number systems. The fundamental domain of a number system $(M, \Phi(\mathcal{N}))$ is defined by

$$
\mathcal{F}=\left\{z \mid z=\sum_{j \geq 1} M^{-j} d_{j}, d_{j} \in \Phi(\mathcal{N})\right\} .
$$

Sloppily spoken, \mathcal{F} contains all elements of \mathbb{R}^{2}, with integer part zero in their " M-adic" representation. In Figure 1 the fundamental domain corresponding to the M-adic representations arising from the Gaussian integer $-1+i$ is depicted. This so-called "twin dragon" was studied extensively by Knuth in his book [13].

Figure 1. The fundamental domain of a number system
Fundamental domains of number systems have been studied in various papers. Kátai and Kőrnyei [9] proved, that \mathcal{F} is a compact set that tesselates the plane in the following way.

$$
\begin{equation*}
\bigcup_{g \in \mathbb{Z}^{2}}(\mathcal{F}+g)=\mathbb{R}^{2} \quad \text { where } \quad \lambda\left(\left(\mathcal{F}+g_{1}\right) \cap\left(\mathcal{F}+g_{2}\right)\right)=0 \quad\left(g_{1}, g_{2} \in \mathbb{Z}^{2} ; g_{1} \neq g_{2}\right) \tag{1}
\end{equation*}
$$

Furthermore, we want to mention, that the boundary of \mathcal{F} has fractal dimension. Its Hausdorff and box counting dimension has been calculated by Gilbert [4], Ito [7], Müller-Thuswaldner-Tichy [16] and Thuswaldner [17]. In the present paper we are interested in topological properties of \mathcal{F}. Before we give a survey on our results we shall define some basic objects. Let S be the set of all translates of \mathcal{F}, that "touch" \mathcal{F}, i.e.

$$
S:=\left\{g \in \mathbb{Z}^{2} \backslash(0,0)^{T} \mid \mathcal{F} \cap(\mathcal{F}+g) \neq \emptyset\right\} .
$$

Then by (1) the boundary of \mathcal{F} has the representation

$$
\begin{equation*}
\partial \mathcal{F}=\bigcup_{g \in S}(\mathcal{F} \cap(\mathcal{F}+g)) \tag{2}
\end{equation*}
$$

Hence, the boundary of \mathcal{F} is the set of all elements of \mathcal{F}, that are contained in $\mathcal{F}+g$ for a certain $g \neq(0,0)^{T}$. Of course, $\partial \mathcal{F}$ may contain points, that belong to \mathcal{F} and two other different translates of \mathcal{F}. These points we call vertices of \mathcal{F}. Thus the set of vertices of \mathcal{F} is defined by

$$
V:=\left\{z \in \mathcal{F} \mid z \in\left(\mathcal{F}+g_{1}\right) \cap\left(\mathcal{F}+g_{2}\right), g_{1}, g_{2} \in \mathbb{Z}^{2} ; g_{1} \neq g_{2}, g_{1} \neq 0, g_{2} \neq 0\right\}
$$

In Section 2 we study the set of vertices of \mathcal{F}. It turns out, that, apart from one exceptional case, \mathcal{F} has at least 6 vertices. In some cases we derive that V is an infinite or even uncountable set. In Section 3 we prove the connectedness of \mathcal{F} and show that each element of \mathcal{F}, which has a finite M-adic expansion, is an inner point of \mathcal{F}.

2. Vertices of the Fundamental Domain \mathcal{F}

In this section we give some results on the set of vertices V of \mathcal{F}. For number systems emerging from Gaussian integers, similar results have been established with help of different methods in Gilbert [3]. We start with the definition of useful abbrevations. Let

$$
\begin{equation*}
g=M^{-H_{1}} d_{-H_{1}}+\cdots+M^{H_{2}} d_{H_{2}} \tag{3}
\end{equation*}
$$

be the M-adic representation of g. Note, that the digits $d_{j}\left(-H_{1} \leq j \leq H_{2}\right)$ are of the shape $d_{j}=\left(c_{j}, 0\right)^{T} \in \Phi(\mathcal{N})$. Thus for the expansion (3) we will write

$$
g=c_{H_{2}} c_{H_{2}-1} \ldots c_{1} c_{0} . c_{-1} \ldots c_{H_{1}}
$$

If the string $c_{1} \ldots c_{H}$ occurs j times in an M-adic representation, then we write $\left[c_{1} \ldots c_{H}\right]_{j}$. If a representation is ultimately periodic, i.e. a string $c_{1} \ldots c_{H}$ occurs infinitely often, we write $\left[c_{1} \ldots c_{H}\right]_{\infty}$. First we show, that for $A>0$ any fundamental domain \mathcal{F} contains at least 6 vertices.
Theorem 2.1. Let $(M, \Phi(\mathcal{N}))$ be a number system in \mathbb{R}^{2}, which is induced by the base b of a canonical number system. Let $p_{b}(x)=x^{2}+A x+B$ with $A>0$ be the minimal polynomial of b. Then the set of vertices V of the fundamental domain \mathcal{F} of this number system contains the points

$$
\begin{array}{cl}
P_{1}=0 .[0(A-1)(B-1)]_{\infty}, & P_{2}=0 .[(A-1)(B-1) 0]_{\infty}, \\
P_{3}=0 .[0(B-1)(B-A)]_{\infty}, & P_{4}=0 .[(B-1)(B-A) 0]_{\infty}, \\
P_{5}=0 .[(B-1) 0(A-1)]_{\infty}, & P_{6}=0 .[(B-A) 0(B-1)]_{\infty}
\end{array}
$$

Depending on the cases $A=1,1<A<B$ and $A=B$, the points $P_{j}(1 \leq j \leq 6)$ belong to the following translates $\mathcal{F}+w$ of \mathcal{F}.

	values of w for $1<A<B$	values of w for $A=B$
P_{1}	$0,1,1 A$	$0,1,1(A-1) 10$
P_{2}	$0,1(A-1), 1 A(B-1)$	$0,1(A-1), 1(A-1) 10(A-1)$
P_{3}	$0,1 A, 1(A-1)$	$0,1(A-1), 1(A-1) 10$
P_{4}	$0,1 A(B-1), 1(A-1)(B-A)$	$0,1 A(A-1), 1(A-1) 0$
P_{5}	$0,1(A-1)(B-A+1), 1$	$0,1(A-1) 1,1$
P_{6}	$0,1(A-1)(B-A), 1(A-1)(B-A+1)$	$0,1(A-1) 1,1(A-1) 0$

The case $A=1$ is very similar to the case $1<A<B$; just replace the representation $1(A-1)(B-A+1)$ by $11(B-1) 0$ in the above table.
Remark 2.1. Note, that we have $0<A \leq B \geq 2$. Hence the digits of the 6 points indicated in Theorem 2.1 are all admissible.

Proof of the theorem. We will prove that each of the 6 points P_{1}, \ldots, P_{6} is contained in three different translates of \mathcal{F}, as indicated in the statement of the theorem. First we consider the point P_{1}. Write $\bar{x}=-x$. By using $b^{2}+A b+B=0$, we see that

$$
\begin{equation*}
0.1(A-1)(B-A) \bar{B}=0.1[(A-1)(B-A) \overline{(B-1)}]_{\infty}=0 \tag{4}
\end{equation*}
$$

are formal representations of zero. Adding the second representation for 0 given in (4) twice, we have

$$
\begin{aligned}
P_{1} & =0 \cdot[0(A-1)(B-1)]_{\infty}+1 \cdot[(A-1)(B-A) \overline{(B-1)}]_{\infty} \\
& =1 \cdot[(A-1)(B-1) 0]_{\infty} \\
& =1 \cdot[(A-1)(B-1) 0]_{\infty}+1(A-1) \cdot[(B-A) \overline{(B-1)}(A-1)]_{\infty} \\
& =1 A \cdot[(B-1) 0(A-1)]_{\infty} .
\end{aligned}
$$

For $A<B$ this yields

$$
P_{1} \in \mathcal{F} \cap(\mathcal{F}+1) \cap(\mathcal{F}+1 A) .
$$

For $A=B$ the last expansion $1 A \cdot[(B-1) 0(A-1)]_{\infty}$ is not admissible since $A>B-1$. In order to settle this case we use the first representation of zero given in (4) to get $1 A=$ $1 B=1 B+1(B-1) 0 \bar{B}=1(A-1) 10$. As a result, we have

$$
P_{1} \in \mathcal{F} \cap(\mathcal{F}+1) \cap(\mathcal{F}+1(A-1) 10)
$$

for $A=B$. Since $P_{2}=M P_{1}$, we get the desired results also for P_{2}. Now we treat

$$
P_{3}=0 .[0(B-1)(B-A)]_{\infty} .
$$

In the same way as before, we get, using both representations of zero in (4)

$$
\begin{aligned}
P_{3} & =0 \cdot[0(B-1)(B-A)]_{\infty}+1 A \cdot B-0 \cdot 1[(A-1)(B-A) \overline{(B-1)}]_{\infty} \\
& =1 A \cdot[(B-1)(B-A) 0]_{\infty} \\
& =1 A \cdot[(B-1)(B-A) 0]_{\infty}-1 \cdot[(A-1)(B-A) \overline{(B-1)}]_{\infty} \\
& =1(A-1) \cdot[(B-A) 0(B-1)]_{\infty},
\end{aligned}
$$

which implies

$$
P_{3} \in \mathcal{F} \cap(\mathcal{F}+1 A) \cap(\mathcal{F}+1(A-1))
$$

for $A<B$ and

$$
P_{3} \in \mathcal{F} \cap(\mathcal{F}+1(A-1) 10) \cap(\mathcal{F}+1(A-1))
$$

for $A=B$. Since \mathcal{F} permits an involution $\varphi: x \rightarrow \sum_{j \geq 1} M^{-j}(B-1,0)^{T}-x, \mathcal{F}$ is symmetric with respect to the center $\frac{1}{2} \sum_{j \geq 1} M^{-j}(B-1,0)^{T}$. For $w \in \mathbb{Z}^{2}$ this map sends each $\mathcal{F}+w$ to $\mathcal{F}-w$. Thus we have

$$
\begin{aligned}
\varphi(\mathcal{F}+1) & =\mathcal{F}+1 A(B-1), \\
\varphi(\mathcal{F}+1(A-1)) & = \begin{cases}\mathcal{F}+1(A-1)(B-A+1) & \text { for } A>1, \\
\mathcal{F}+11(B-1) 0 & \text { for } A=1,\end{cases} \\
\varphi(\mathcal{F}+1 A) & =\mathcal{F}+1(A-1)(B-A),
\end{aligned}
$$

for $A<B$ and

$$
\begin{aligned}
\varphi(\mathcal{F}+1) & =\mathcal{F}+1(A-1) 10(A-1), \\
\varphi(\mathcal{F}+1(A-1)) & =\mathcal{F}+1(A-1) 1, \\
\varphi(\mathcal{F}+1(A-1) 10) & =\mathcal{F}+1(A-1) 0,
\end{aligned}
$$

for $A=B$. Furthermore, it is easy to see, that $\varphi\left(P_{1}\right)=P_{4}, \varphi\left(P_{2}\right)=P_{5}$ and $\varphi\left(P_{3}\right)=P_{6}$ Thus also P_{4}, P_{5} and P_{6} are vertices of \mathcal{F} that are contained in the translates of \mathcal{F} indicated in the statement of the theorem.

In the case $A=0$ it is easy to see that \mathcal{F} is a square. It has exactly 4 vertices. These are the "usual" vertices of the square. Thus we only have to deal with the case $A=-1$. We will folmulate the corresponding result as a corollary.

Corollary 2.1. Let the same settings as in Theorem 2.1 be in force, but assume now, that $A=-1$. Then the following table gives 6 points $P_{j}(1 \leq j \leq 6)$, that are contained in the set of vertices V of \mathcal{F}. Furthermore, we give the translates $\mathcal{F}+w$, to which P_{j} belongs.

P_{j}	translates w, for which $P_{j} \in \mathcal{F}+w$
$0 .[0(B-1)(B-1)(B-1) 00]_{\infty}$	$0,10(B-1), 10(B-1)(B-1)$
$0 .[000(B-1)(B-1)(B-1)]_{\infty}$	$0,1,10$
$0 .[00(B-1)(B-1)(B-1) 0]_{\infty}$	$0,10,10(B-1)$
$0 .[(B-1) 000(B-1)(B-1)]_{\infty}$	$0,1,10(B-1)(B-1) 1$
$0 .[(B-1)(B-1) 000(B-1)]_{\infty}$	$0,10(B-1)(B-1), 10(B-1)(B-1) 1$
$0 .[(B-1)(B-1)(B-1) 000]_{\infty}$	$0,10(B-1)(B-1) 0,10(B-1)(B-1) 1$

Proof. Let $M_{1}=\left(\begin{array}{cc}0 & -B \\ 1 & -1\end{array}\right)$ and $M_{2}=\left(\begin{array}{cc}0 & -B \\ 1 & 1\end{array}\right)$ be bases of number systems in \mathbb{R}^{2} and let \mathcal{F}_{1} and \mathcal{F}_{2} be the fundamental domains corrresponding to M_{1} and M_{2}, respectively. We know the vertices of \mathcal{F}_{1} from Theorem 2.1 and will construct the vertices of \mathcal{F}_{2} from it. To this matter let $M_{1}=G_{1} \operatorname{diag}\left(b_{1}, b_{2}\right) G_{1}^{-1}$. It is easy to see, that then $M_{2}=G_{2} \operatorname{diag}\left(-b_{1},-b_{2}\right) G_{2}^{-1}$ with $G_{2}=\operatorname{diag}(-1,1) G_{1}$. Now suppose, that $\sum_{k \geq 1} M_{1}^{-k} a_{j} \in \mathcal{F}_{1} \cap \mathcal{F}_{1}+\left(v_{1}, v_{2}\right)^{T} \cap \mathcal{F}_{1}+$
$\left(w_{1}, w_{2}\right)^{T}$ with $v_{1}, v_{2}, w_{1}, w_{2} \in \mathbb{Z}$ is a vertex of \mathcal{F}_{1}. Using the fact, that $G_{1}^{-1} a_{k}=-G_{2}^{-1} a_{k}$ for $a_{k} \in \mathcal{M}$ and setting $d=0 \cdot[0(B-1)]_{\infty}$ we easily derive that

$$
\begin{equation*}
Q:=\sum_{k \geq 1}(-1)^{k+1} M_{2}^{-k} a_{k}+d \in \operatorname{diag}(-1,1)\left(\mathcal{F}_{1} \cap \mathcal{F}_{1}+\left(v_{1}, v_{2}\right)^{T} \cap \mathcal{F}_{1}+\left(w_{1}, w_{2}\right)^{T}\right)+d \tag{5}
\end{equation*}
$$

Observe, that by the selection of d, Q has an admissible M_{2}-adic representation with integer part zero. Thus $Q \in \mathcal{F}_{2}$. Since any element of \mathcal{F}_{2} can be constructed from elements of \mathcal{F}_{1} in the same way we conclude, that $\mathcal{F}_{2}=\operatorname{diag}(-1,1) \mathcal{F}_{1}+d$. But with that (5) reads $Q \in \mathcal{F}_{2} \cap \mathcal{F}_{2}+\left(-v_{1}, v_{2}\right)^{T} \cap \mathcal{F}_{2}+\left(-w_{1}, w_{2}\right)^{T}$. Thus Q is a vertex of \mathcal{F}_{2}. The representations in the table above, can now easily be obtained from the results for $A=1$ in Theorem 2.1.

The following corollary is an immediate consequence of Theorem 2.1 and Corollary 2.1.
Corollary 2.2. For $1<A<B$ we have

$$
S \supset\{1,1 A, 1(A-1), 1 A(B-1), 1(A-1)(B-A), 1(A-1)(B-A+1)\}
$$

for $A=B$

$$
S \supset\{1,1(A-1) 10,1(A-1), 1(A-1) 10(A-1), 1(A-1) 0,1(A-1) 1\}
$$

while for $A=1$

$$
S \supset\{1,10,10(B-1), 10(B-1)(B-1), 10(B-1)(B-1) 0,10(B-1)(B-1) 1\}
$$

holds.
Remark 2.2. Note, that " \supset " may be replaced by " $=$ " in Corollary 2.2 if $2 A<B+3$. This is shown for the Gaussian case in [16]. For arbitrary quadratic number fields this fact can be proved in a similar way.

Theorem 2.2. Let the same settings as in Theorem 2.1 be in force. If $2 A=B+3$ then \mathcal{F} has infinitely many vertices.

Proof. Set $K=B-A+1=\frac{B-1}{2}$. Then, using $b^{2}+A b+B=0$, we get $(j \geq 0)$

$$
\begin{align*}
0= & \sum_{k=2}^{\infty}(-1)^{k}\left(M^{-k+2}(1,0)^{T}+M^{-k+1}(A, 0)^{T}+M^{-k}(B, 0)^{T}\right) \tag{6}\\
& =1 .(A-1)[K \bar{K}]_{\infty}
\end{align*}
$$

Here we set $\bar{x}=-x$, as before. We will show, that the points

$$
\begin{equation*}
Q_{j}=1 A \cdot[(B-1) 0(A-1)]_{2 j}(B-1) 0[K]_{\infty} \quad(j \in \mathbb{N}) \tag{7}
\end{equation*}
$$

are vertices of \mathcal{F}. Therefore we need the representation (6). With help of this representation we define the following representations of zero.

$$
\begin{aligned}
& N_{1}:=1(A-1) \cdot[K \bar{K}]_{\infty}=0 \\
& N_{2}:=1 \cdot(A-1)[K \bar{K}]_{\infty}=0 \\
& X_{j}:=0 \cdot[0]_{j} 1 A B=0 \quad(j \geq 0)
\end{aligned}
$$

In the sequel we write $k X_{j}(k \in \mathbb{Z})$ if we want to multiply each digit of the representation X_{j} by k. Furthermore, addition and subtraction of representations is always meant digit-wise. After these definitions we define the following, more complicated representations of zero.

$$
\begin{aligned}
Z_{1}(j) & :=N_{1}+\sum_{k=1}^{j}\left(X_{6 k-1}-2 X_{6 k-2}+2 X_{6 k-3}-X_{6 k-4}\right)+(1 . A B)-2(1 A \cdot B) \\
& =\overline{1} A \cdot[(\overline{B-1})(A-1)(B-A)]_{2 j}(\overline{B-1})(A-1)[K \bar{K}]_{\infty} \\
Z_{2}(j) & :=N_{2}+\sum_{k=1}^{j}\left(-X_{6 k-3}+2 X_{6 k-4}-2 X_{6 k-5}+X_{6 k-6}\right)-(1 A \cdot B) \\
& =\overline{1}(\overline{A-1}) \cdot(\overline{B-A})[(B-1)(\overline{A-1})(\overline{B-A})]_{2 j-1}(B-1)(\overline{A-1}) \bar{K}[K \bar{K}]_{\infty} .
\end{aligned}
$$

Finally, we observe, that for $j \in \mathbb{N}$

$$
\begin{aligned}
Q_{j} & =Q_{j}+Z_{1}(j) \\
& =0 \cdot[0(A-1)(B-1)]_{2 j} 0(A-1)[(B-1) 0]_{\infty} \\
& =Q_{j}+Z_{2}(j) \\
& =1 \cdot(A-1)[(B-1) 0(A-1)]_{2 j-1}(B-1) 0 K K[0(B-1)]_{\infty},
\end{aligned}
$$

and this implies $Q_{j} \in V$. It remains to show, that the elements $Q_{j}, j \geq 1$, are pairwise different. This follows from the following observation. Select $k \in \mathbb{N}$ arbitrary and let $j_{1}, j_{2} \leq k$. Suppose, that $Q_{j_{1}}$ and $Q_{j_{2}}$ are represented by the representation (7) for $j=j_{1}$ and $j=j_{2}$, respectively. Then $Q_{j_{1}}=Q_{j_{2}}$ if and only if $M^{6 k+2} Q_{j_{1}}=M^{6 k+2} Q_{j_{2}}$. For $k \geq \max \left(j_{1}, j_{2}\right), M^{6 k+2} Q_{j_{1}}$ and $M^{6 k+2} Q_{j_{2}}$ have the same digit string $[0(B-1)]_{\infty}$ after the comma. Hence, they can only be equal, if their integer parts are equal. But since $(M, \Phi(\mathcal{N}))$ is a number system, this can only be the case, if the digit strings of their integer parts are the same. This implies $j_{1}=j_{2}$. So we have proved, that the points Q_{j} are pairwise different for $j \leq k$. Since k can be selected arbitrary, the result follows. Thus we found infinitely many different vertices of \mathcal{F}.

Theorem 2.3. Let the same settings as in Theorem 2.1 be in force. If $2 A>B+3$ then \mathcal{F} has uncountably many vertices.

Proof. Set $K=B-A+1$ and $\xi=\lfloor(B-1) / 2\rfloor$. As $\xi+K, \xi-K \in \mathcal{N}$, by using (6), we see that

$$
\begin{aligned}
0 .[\xi]_{\infty} & =1(A-1) \cdot[(\xi+K)(\xi-K)]_{\infty} \\
& =1(A-1) K \cdot[(\xi-K)(\xi+K)]_{\infty} .
\end{aligned}
$$

Thus $0 .[\xi]_{\infty}$ is a vertex of \mathcal{F}. Fix an integer k, such that all eigenvalues of M^{k} are greater than 2 (such an integer exists, since the eigenvalues of M are all greater than 1). This implies, that the representations $0 . c_{1}[0]_{k} c_{2}[0]_{k} c_{3}[0]_{k} c_{4} \ldots, c_{j} \in\{0,1\}(j \geq 1)$ represent pairwise different elements of \mathbb{R}^{2} for different $\{0,1\}$ sequences $\left\{c_{j}\right\}_{j \geq 1}$. Because $\xi+K<B-1$, each of the uncountably many representations

$$
0 .[\xi]_{\infty}+0 . c_{1}[0]_{k} c_{2}[0]_{k} c_{3}[0]_{k} c_{4} \ldots \quad\left(c_{j} \in\{0,1\}, j \geq 1\right)
$$

corresponds to a vertex of \mathcal{F}. Since they are pairwise different, the theorem is proved.

3. Connectedness and Inner Points of the Fundamental Domain \mathcal{F}

In this section we will show, that the fundamental domain \mathcal{F} is arcwise connected. To establish this result, we will apply a general theorem due to Hata (cf. [5, 6]) which assures arcwise connectedness for a large class of sets. The second result of this section is devoted to the structure of the inner points of \mathcal{F}. In particular, we prove, that each point with finite M-adic representation is an inner point of \mathcal{F}. In this section we will use the notation

$$
\mathcal{F}_{k}:=\left\{z \mid z=\sum_{j=1}^{k} M^{-j} a_{j}, a_{j} \in \Phi(\mathcal{N})\right\} \quad(k \in \mathbb{N})
$$

We start with the connectedness result.
Theorem 3.1. Let $(M, \Phi(\mathcal{N}))$ be a number system in \mathbb{R}^{2}, which is induced by the base b of a canonical number system in a quadratic number field. Then the fundamental domain \mathcal{F} of $(M, \Phi(\mathcal{N}))$ is arcwise connected.

Proof. It is an easy consequence of the definition of \mathcal{F}, that

$$
\begin{equation*}
\mathcal{F}=\bigcup_{g \in \Phi(\mathcal{N})} M^{-1}(\mathcal{F}+g) \tag{8}
\end{equation*}
$$

Furthermore, Theorem 2.1 implies that $\mathcal{F} \cap\left(\mathcal{F}+(1,0)^{T}\right) \neq \emptyset$. Thus the sets contained in the union of (8) form a chain in the sense that $(\mathcal{F}+g) \cap\left(\mathcal{F}+\left(g+(1,0)^{T}\right)\right) \neq \emptyset$ for $g \in \Phi(\mathcal{N}) \backslash(B-1,0)^{T}$. Thus \mathcal{F} fulfills the conditions being necessary for the application of a theorem of Hata, namely [5, Theorem 4.6]. This theorem yields the arcwise connectedness of \mathcal{F}.

Now we prove the result on the inner points of \mathcal{F}. Note, that the existence of inner points is an immediate consequence of [9, Theorem 1].

Theorem 3.2. Let $(M, \Phi(\mathcal{N}))$ be a number system in \mathbb{R}^{2}, which is induced by the base b of a canonical number system in a quadratic number field. Then for each $k \in \mathbb{N}$ we have

$$
\mathcal{F}_{k} \subset \operatorname{int}(\mathcal{F})
$$

Proof. First we will show, that 0 is an inner point of \mathcal{F}. Suppose, that 0 is contained in the boundary of \mathcal{F}. Then by (2) there exists a representation of zero of the shape

$$
\begin{equation*}
0=c_{H_{1}} c_{H_{1}-1} \ldots c_{1} c_{0} \cdot c_{-1} c_{-2} \ldots \tag{9}
\end{equation*}
$$

This representation implies $0 \in \mathcal{F}+c_{H_{1}} c_{H_{1}-1} \ldots c_{1} c_{0}$. If we multiply (9) by M^{j} for $j \in \mathbb{N}$ arbitrary, we conclude, that $0 \in \mathcal{F}+c_{H_{1}} c_{H_{1}-1} \ldots c_{1} c_{0} c_{-1} \ldots c_{-j}$ for each $j \in \mathbb{N}$. Hence, 0 is contained in infinitely many different translates of \mathcal{F}. But since \mathcal{F} is a compact set this is a contradiction to (1). Thus $0 \in \operatorname{int}(\mathcal{F})$.

Now fix $k \in \mathbb{N}$ and $g \in \mathcal{F}_{k}$. Then $0 \in \operatorname{int}(\mathcal{F})$ implies, that $g \in \operatorname{int}\left(M^{-k} \mathcal{F}+g\right)$. The result now follows from the representation

$$
\mathcal{F}=\bigcup_{g \in \mathcal{F}_{k}}\left(M^{-k} \mathcal{F}+g\right) .
$$

There is a direct alternative proof of this theorem by using the methods of [1] and [2]. In these papers a similar result for the tiling generated by Pisot number systems is shown.

References

[1] S. Akiyama. Self affine tiling and pisot numeration system. In K. Győry and S. Kanemitsu, editors, Number Theory and its Applications. Kluwer Academic Publishers. to appear.
[2] S. Akiyama and T. Sadahiro. A self-similar tiling generated by the minimal pisot number. Acta Math. Info. Univ. Ostraviensis, 6:9-26, 1998.
[3] W. J. Gilbert. Complex numbers with three radix representations. Can. J. Math., 34:1335-1348, 1982.
[4] W. J. Gilbert. Complex bases and fractal similarity. Ann. sc. math. Quebec, 11(1):65-77, 1987.
[5] M. Hata. On the structure of self-similar sets. Japan J. Appl. Math, 2:381-414, 1985.
[6] M. Hata. Topological aspects of self-similar sets and singular functions. In J. Bélair and S. Dubuc, editors, Fractal Geometry and Analysis, pages 255-276, Netherlands, 1991. Kluwer Academic Publishers.
[7] S. Ito. On the fractal curves induced from the complex radix expansion. Tokyo J. Math., 12(2):299-320, 1989.
[8] I. Kátai. Number systems and fractal geometry. preprint.
[9] I. Kátai and I. Kőrnyei. On number systems in algebraic number fields. Publ. Math. Debrecen, 41(3-4):289-294, 1992.
[10] I. Kátai and B. Kovács. Kanonische Zahlensysteme in der Theorie der Quadratischen Zahlen. Acta Sci. Math. (Szeged), 42:99-107, 1980.
[11] I. Kátai and B. Kovács. Canonical number systems in imaginary quadratic fields. Acta Math. Hungar., 37:159-164, 1981.
[12] I. Kátai and J. Szabó. Canonical number systems for complex integers. Acta Sci. Math. (Szeged), 37:255-260, 1975.
[13] D. E. Knuth. The Art of Computer Programming, Vol 2: Seminumerical Algorithms. Addison Wesley, London, 3rd edition, 1998.
[14] B. Kovács. Canonical number systems in algebraic number fields. Acta Math. Hungar., 37:405-407, 1981.
[15] B. Kovács and A. Pethő. Number systems in integral domains, especially in orders of algebraic number fields. Acta Sci. Math. (Szeged), 55:286-299, 1991.
[16] W. Müller, J. M. Thuswaldner, and R. F. Tichy. Fractal properties of number systems. preprint.
[17] J. M. Thuswaldner. Fractal dimension of sets induced by bases of imaginary quadratic fields. Math. Slovaca, 48(4):365-371, 1998.

Shigeki Akiyama	Jörg M. Thuswaldner
Department of Mathematics	Department of Mathematics and Statistics
Faculty of Science	Montanuniversität Leoben
Niigata University	Franz-Josef-Str. 18
NIIGATA	LEOBEN
JAPAN	AUSTRIA

