
NEW CRITERIA FOR CANONICAL NUMBER SYSTEMS

SHIGEKI AKIYAMA AND HUI RAO

Abstract. Let P (x) = xd + pd−1x
d−1 + · · · + p0 be an expanding monic

polynomial with integer coefficients. If each element of Z[x]/P (x)Z[x] has a
polynomial representative with coefficients in [0, |p0| − 1] then P (x) is called
a canonical number system generating polynomial, or a CNS polynomial in
short. A method due to Hollander [6] is employed to study CNS polynomials.
Several new criteria for canonical number system generating polynomials are
given and a conjecture of S.Akiyama & A.Pethő [3] is proved. The known
results, especially an algorithm of H. Brunotte’s in [4] and a recent work of K.
Scheicher & J.M.Thuswaldner [15], can be derived by this new method in a
simpler way.

1. Introduction

Let P (x) = pdx
d + pd−1x

d−1 + · · · + p0 be a polynomial of x with integer
coefficients and pd = 1. Let R be the quotient ring Z[x]/P (x)Z[x]. As a Z-
module, R is naturally isomorphic to Zd and each element ξ of R is represented
uniquely in the form

(1) ξ ≡
d−1∑
i=0

aix
i (mod P (x))

with ai ∈ Z. If an element ξ ∈ R has an expression of the form

ξ ≡ b0 + b1x + · · ·+ bM−1x
M−1 (mod P (x))

with ai ∈ [0, |p0| − 1]∩Z, then we say that ξ has a canonical expression. If every
element ξ ∈ R has a canonical expression, then P (x) is called a canonical number
system generating polynomial, or a CNS polynomial in short. Let T : R → R be
a map defined by

T (ξ) ≡
d−1∑
i=0

(
ai+1 − pi+1

[
a0

p0

])
xi (mod P (x)).
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Here we put ad = 0. Let α = x mod P (x). Then R/(α) is isomorphic to Z/p0Z
as a Z-module. Denote this isomorphism as τ : R/(α) → Z/p0Z. Then the map
T can be rewritten as

T (ξ) = (ξ − a)/α

where a ∈ [0, |p0| − 1] is the representative of τ(ξ). Denote by Tm the m-th
iteration of the map T . ξ has a canonical expression (obviously this expression
is unique) if and only if there is a non-negative integer M such that TM(x) = 0.

When P (x) is irreducible, R is identified with Z[α] with a root α of P (x). This
case had been extensively studied. In this case, a pair (α, {0, 1, . . . , |p0| − 1}) is
said to form a canonical number system when P (x) is a CNS polynomial. Here
we only refer to the original studies in I. Kátai & J. Szabó [7], I. Kátai & B.
Kovács [9], [10], W. Gilbert [5] and B. Kovács & A. Pethő [12].

A. Pethő [13] generalized this study to non irreducible polynomials. It is well
known that (see [12])

If P (x) is a CNS polynomial, then P (x) is expanding (,that is, all root of P (x)
has modulus greater than one) and P (x) has no positive real root. Especially the
last condition implies

(2) p0 > 1.

It is not hard to work out an algorithm to determining whether a polynomial
is a CNS polynomial. In Section 2, we will give such an algorithm. However,
we want to see whether a given polynomial is a CNS polynomial or not by just
looking its coefficients. Many papers are devoted to this problem. Generalizing
former results of I. Kátai & B. Kovács [9], [10], B.Kovács proved

If p0 ≥ 2 and

(3) pd ≤ pd−1 ≤ · · · ≤ p0

hold, then P (x) is a CNS polynomial (see also [5], [13]) provided P (x) is irre-
ducible.

In S. Akiyama & A.Pethő [3], it is proved that

p2 ≥ 0, p3 ≥ 0, . . . , pd−1 ≥ 0,
d∑

i=1

pi ≥ 0, and p0 > 2
d∑

i=1

|pi|

imply that P (x) is a CNS polynomial. In the same paper, they conjectured that
the last condition can be relaxed to

(4) p0 >

d∑
i=1

|pi|.

In this paper, we employ a method of Hollander to study CNS polynomials
(He deviced the method for studying of Pisot number system). In section 3, we
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give two criteria of CNS polynomials. First we will give an affirmative answer to
the conjecture of [3] and also deal with a slightly generalized situation

(5) p0 ≥
d∑

i=1

|pi|

in Theorem 3.2. Second, when P (x) is a polynomial with (5) and has exactly
one negative coefficient, P (x) is a CNS polynomial or not is characterized by one
inequality (see Theorem 3.5).

Section 4 is devoted to Bronotte’s algorithm. H. Brunotte [4] discovered a nice
method to determine CNS polynomials. The original argument looks not simple.
We apply our method and give a short proof of Brunotte’s Lemma (See Lemma
4.1). Also Theorem 4.2 shows that for any expanding P (x), Brunotte’s method
actually gives a finite and efficient algorithm to determine CNS polynomials.
Moreover, if the dominant condition (5) is assumed, then the algorithm becomes
simpler (Theorem 4.3).

While preparing our paper, we are informed that similar results were shown
recently by a different approach by K. Scheicher & J.M.Thuswaldner [15]. We
would like to express our deep gratitude for their correspondences. It seems
worthy to describe in detail the difference of ideas. The main difference is in the
ways of description. Our way is algebraic having a flavor of symbolic dynamics.
The idea of proofs is originally due to the thesis of M.Hollander [6]. On the other
hand, their way depends on the transducer automata. Nevertheless, the basic
ideas of two papers are close.

Corollary 4.4 is first proved by [15]. As a generalization of their result, we
relax the condition (4) to (5) and get Theorem 4.3. Inspired by their result,
easy characterizations of CNS polynomials with (4) of degree not larger than 5
will be given in §5. Our idea in §5 is to use not only Corollary 4.4 but also
all known necessary conditions to simplify our arguments. It is shown that the
known necessary conditions are not sufficient to characterize degree five CNS
polynomials, even if we assume (4).

2. Algorithm.

Here we give a basic proposition.

Proposition 2.1. Assume that P (x) is an expanding polynomial. Then for any
ξ ∈ R, the sequence

ξ, T (ξ), T 2(ξ), . . .

is eventually periodic.

Remark 2.2. I. Kátai & I. Kőrnyei [8] proved this in the case when P (x) is ex-
panding and irreducible.
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Proof. Let P (x) be an expanding polynomial as in §1 and A be its companion
matrix, that is,

A =




0 0 0 . . . 0 −p0

1 0 0 . . . 0 −p1

0 1 0 . . . 0 −p2
...

...
0 . . . 0 1 0 −pd−2

0 . . . . . . 0 1 −pd−1




.

Let D be a complete representative system of Zd/AZd of the form

D = {kv | k = 0, 1, . . . , p0 − 1}
with v = (0, . . . , 0, 1). Let ξ ∈ R and

ξ = ξ0 + ξ1α + · · ·+ ξd−1α
d−1.

We can embed R into Rd by

π(ξ) :=




ξ0

ξ1
...

ξd−1


 .

It is easy to check π(αξ) = Aπ(ξ). For any y ∈ Zd there is a unique v ∈ D such
that A−1(y − v) is an integer. Define

S(y) := A−1(y − v).

To prove {Tm(ξ)}m≥0 is eventually periodic, we only need to show that {Sm(y)}m≥0

is eventually periodic. As A is expanding there exists a positive integer k so that
the map fk : x → A−kx is a contraction 1 on Rd. This implies that {Sm(y)}m≥0

is a bounded sequence in Zd, and thus it is eventually periodic. ¤

Let P be the set of purely periodic elements in R, i.e.,

(6) P = {ξ ∈ R | ∃M > 0 TM(ξ) = ξ}.
By Proposition 2.1, an expanding polynomial P (x) is a CNS polynomial if and
only if P = {0}. It is important to get an algorithmic bound for searching
elements of P . In fact, it is easily seen that if P (x) has no multiple root, then

(7) P ⊂
{

ξ ∈ R

∣∣∣∣ |ξ(α)| ≤ |p0| − 1

|α| − 1
for all root α of P (x)

}
,

(see [12], [8] and [13]). Here ξ(α) is well defined by substituting the indeterminate
x with α.

1Note that f1 is not necessary a contraction.
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In the following, we shortly discuss a way to give an explicit upper bound suit-
able for computation, and this will give us an effective algorithm for determining
whether a polynomial is a CNS polynomial.

Decompose the expanding polynomial P (x) =
∏n

i=1(x− αi)
ei+1 into factors in

C(x). For ξ ∈ R, let

Tm(ξ) =
Tm−1(ξ)− am−1

α
where am−1 ∈ [0, |p0| − 1] ∩ Z is a representative of τ(Tm−1(ξ)). Then we have

(8) ξ = a0 + a1α + · · ·+ am−1α
m−1 + αmTm(ξ).

We wish to give an upper bound of the set {Tm(ξ)}m=0,1,.... Putting ξ =
E(x) mod P (x) and Tm(ξ) = Fm(x) mod P (x), then (8) is rewritten into:

(9) E(x) = a0 + a1x + · · ·+ am−1x
m−1 + xmFm(x) + Gm(x)P (x),

for some Gm(x) ∈ Z[x]. We claim that, for any ε > 0,

(10)

∣∣∣∣
dj

dxj
Fm(αi)

∣∣∣∣ ≤ Kj(αi) + ε

for a sufficiently large m where

Kj(αi) =
j!(|p0| − 1)

(|αi| − 1)1+j
.

This is shown by differentiating (9) several times and using an estimate:
∣∣∣∣∣

m∑

`=1

am−`
(−`)j

αj+`
i

∣∣∣∣∣ ≤ (|p0| − 1)
m∑

`=1

`(` + 1) . . . (` + j − 1)

|αi|j+`
= Kj(αi)

where

(r)j =

{
r(r − 1) . . . (r − j + 1) , j ≥ 1

1 , j = 0.

On the other hand by (1), there exist integers cm,i that

Fm(x) =
d−1∑
i=0

cm,ix
i.

Then we can deduce an upper bound of cm,i from (10). This shows that {Tm(ξ)}m=0,1,...

is contained in a bounded set which gives an alternative proof of Proposition 2.1.
As ξ = E(x) mod P (x) we may define, for i = 1, . . . , ei,

ξ(j)(αi) =
dj

dxj
E(x)

∣∣∣∣
x=αi

.

Then we see
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Proposition 2.3.

(11) P ⊂ {
ξ ∈ R

∣∣ |ξ(j)(αi)| ≤ Kj(αi) for i = 1, 2, . . . , n, j = 0, . . . , ei

}
,

Proof. If ξ ∈ P , then there exist a positive integer M that ξ = TM(ξ). Thus
ξ = Tm(ξ) = Fm(x) mod P (x) ∈ P for any m which is a multiple of M . This
means that |ξ(j)(αi)| ≤ Kj(αi) + ε for any ε > 0, showing the assertion. ¤

3. Sufficient conditions on CNS

Put α = x mod P (x). Then by (1), R has a base {1, α, α2, . . . , αd−1} as a Z-
module. We introduce a different base {w1, w2, . . . , wd}, which already appeared
in [4] [3], [15] and implicitly in [5]:




w1

w2

w3
...

wd




=




pd 0 . . . . . . . . . 0
pd−1 pd 0 . . . . . . 0
pd−2 pd−1 pd 0 . . . 0

...
p1 p2 p3 . . . pd−1 pd







1
α
α2

...
αd−1




.

Define ι : Zd → R by ι(z1, z2, . . . , zd) =
∑d

i=1 ziwi and

zd+1 = −
[∑d

i=1 zipd−i+1

p0

]
.

Replace (z1, z2, . . . , zd) by (z2, z3, . . . , zd+1), where zd+1 is determined by the above
formula. In this way, once (z1, z2, . . . , zd) ∈ Zd is given, it defines an infinite
sequence (z1, z2, . . . , zd, zd+1, . . . ). Let σ : Zd → Zd be a ‘shift’ map:

σ(z1, z2, . . . , zd) = (z2, z3, . . . , zd+1).

Then we can easily confirm the following commutative diagram:

(12)

Zd σ−−−→ Zd

ι

y
yι

R −−−→
T

R

Hereafter we employ the method due to M. Hollander [6] developed for a dif-
ferent number system attached to Pisot numbers. His main idea is to interpret
the map T as a shift on bi-infinite words generated by Z. Next proposition is
merely a consequence of the definition of zi but we restate it to emphasize his
idea.

Proposition 3.1. We have

0 ≤ zipd + zi+1pd−1 + · · ·+ zi+d−1p1 + zi+dp0 < p0,

and zd+i is determined uniquely by this condition.
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Theorem 3.2. Assume that P (x) is an expanding polynomial whose coefficients

satisfy p2 ≥ 0, p3 ≥ 0, . . . , pd−1 ≥ 0,
∑d

i=1 pi ≥ 0 and the dominant condition

p0 >
∑d

i=1 |pi|. Then P (x) is a CNS polynomial. The dominant condition can be

replaced by p0 ≥
∑d

i=1 |pi| if one of the following conditions holds:

(1) p1 < 0,
(2) pi > 0 for all i = 1, . . . , d− 1.

Remark 3.3. The dominant condition p0 >
∑d

i=1 |pi| guarantees that the polyno-
mial P (x) is expanding (c.f. Lemma 1 of [3].)

Remark 3.4. The above supplementary condition is necessary when p0 =
∑d

i=1 |pi|.
For example, x3 + 3x2 + 4 is not a CNS polynomial. H. Brunotte kindly pointed
out an error in the original manuscript and the example is also due to him.

The proof of Theorem 3.2 is divided into two parts. First we settle the case
p1 ≥ 0. The case p1 < 0 will be shown in a more generalized form in Theorem
3.5.

Proof of Theorem 3.2 when p1 ≥ 0. Recall that P is the set of purely periodic
elements in R defined by (6). To prove P (x) is CNS polynomial, it suffices to

show that P = {0}. Otherwise let ξ =
∑d−1

i=0 ziwi be a non zero element of P
and z0z1z2 . . . be the infinite sequence determined by Proposition 3.1. Since ξ
is a non zero purely periodic element, we have z0z1z2 · · · 6= 0∞ and it is purely
periodic. So we can extend it to be a bi-infinite word Ξ = . . . z−2z−1z0z1z2 . . .
and it is easy to see that

(13) 0 ≤ zipd + zi+1pd−1 + · · ·+ zi+d−1p1 + zi+dp0 < p0

hold for all i ∈ Z.
First we argue that there exist i ∈ Z such that zi < 0. For if zi ≥ 0 for all

i ∈ Z, then for an index i such that zi+d > 0 we have

zipd + zi+1pd−1 + · · ·+ zi+d−1p1 + zi+dp0 ≥ p0,

which is a contradiction.
Let mini∈Z zi = −κ ≤ −1 and maxi∈Z zi = η. Note that both κ and η are finite

since Ξ is a periodic word. Now we take i such that zi+d = −κ. Then by the left
side of (13),

zipd + zi+1pd−1 + · · ·+ zi+d−1p1 ≥ κp0(14)

η(pd + pd−1 + · · ·+ p1) ≥ κp0(15)

which yields

(16) η > κ ≥ 1

provided p0 >
∑d

i=1 |pi|.
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We shall show that the inequality (16) holds in case pi > 0 for i = 1, . . . , d− 1

and p0 =
∑d

i=1 pi. The above argument shows

η ≥ κ ≥ 1.

Assume η = κ. By (14) and (15), η = κ and pi > 0 implies

(17) zi = zi+1 · · · = zi+d−1 = η.

Let us consider (13) with i → i− 1. By (17) and the right side of (13),

zi−1 + η(pd−1 + pd−2 + · · ·+ p0) < p0

−κ ≤ zi−1 < −η(pd−1 + pd−2 + · · ·+ p1) + (1− η)p0

κ > η(pd−1 + pd−2 + · · ·+ p1).

As pd−1 + pd−2 + · · ·+ p1 > 0 we get κ > η which is absurd. This shows η > κ in
any cases.

Let j be an index such that zj+d = η. Now we use (13) again with i = j to get:

zjpd + zj+1pd−1 + · · ·+ zj+d−1p1 < (1− η)p0 ≤ −κp0

−κ(pd + pd−1 + · · ·+ p1) < −κp0,

which yields pd + pd−1 + · · · + p1 > p0. This contradicts our assumption. Hence
P = {0}. ¤

Reviewing the above proof, we get a necessary condition for P (x) to be a CNS
polynomial. Let k be an integer, 0 < k ≤ d, and consider the sum

Ck(`) =
∑

0≤ki+`≤d

pki+`, ` = 0, 1, . . . , k − 1.

For certain k, if Ck(`) ∈ [0, p0 − 1] for all `, then P (x) is not a CNS polynomial.
Indeed, a bi-infinite word

Ξ = (

k−1︷ ︸︸ ︷
00...0 1)∞

obviously gives an element of P . Therefore, if P (x) is a CNS polynomial then
for any k, 0 < k ≤ d, there exist ` that Ck(`) 6∈ [0, p0 − 1], which we call the
k-subsum condition.

Since P (x) has no positive roots, we see
∑d

i=0 pi ≥ 0. Hence 1-subsum condition
is nothing but

d∑
i=1

pi ≥ 0,

appeared in the condition of Theorem 3.2. This 1-subsum condition is also seen
in Lemma 4 of [3].
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Now let us treat polynomials having an isolated negative coefficient pk < 0
and satisfying the dominant condition p0 ≥

∑d
i=1 |pi|. Under these assumptions,

Ck(`) (` > 0) must be in [0, p0 − 1]. Thus Ck(0) ≥ p0, i.e.,
∑

1≤ki≤d

pki ≥ 0

is necessary for P (x) to be a CNS polynomial (Note that this implies that k is
not greater than d/2). Theorem 3.5 shows that this condition is also sufficient.

Theorem 3.5. Assume that P (x) is an expanding polynomial with the dominant

condition p0 ≥
∑d

i=1 |pi| whose coefficients are non-negative except pk < 0 for a
single index 0 < k < d. Then P (x) is a CNS polynomial if and only if

∑

1≤ki≤d

pki ≥ 0.

As stated before, the proof of Theorem 3.2 for the case p1 < 0 is completed at
the same time.

Proof of Theorem 3.5. Suppose P (x) is a polynomial satisfying the assump-
tions of the theorem and it is not a CNS polynomial. Then similar to the
proof of Theorem 3.2, we can construct a non-zero bi-infinite periodic word
Ξ = . . . z−2z−1z0z1z2 . . . satisfying (13). We shall derive a contradiction from
the existence of such a word.

Let κ = 0 if zi ≥ 0 for all i ∈ Z. Otherwise we define −κ = mini∈Z zi. Let
η = maxi∈Z zi.

First we claim that η > κ. In case of κ = 0 this is trivial. Suppose κ < 0. Let
i be an index such that zi+d = −κ. Without loss of generality, we assume i = 0.
Then

0 ≤ z0pd + z1pd−1 + · · ·+ zd−1p1 + zdp0 < p0(18)

κp0 ≤ z0pd + z1pd−1 + · · ·+ zd−1p1

κp0 ≤ κ|pk|+ η
∑

i 6=0,k

pi(19)

Inequality (19) implies η ≥ κ. Moreover if zd−k 6= −κ, then we have the strict
inequality:

κp0 < κ|pk|+ η
∑

i6=k

pi

which implies η > κ. The remaining case is that zd = zd−k = −κ. If there
is some ` > 0 such that zd−k` 6= −κ, then by shifting indices, we may assume
zd = −κ 6= zd−k and η > κ follows. If zd−k` = −κ for all ` = 0, 1, 2, . . . , using the
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left side of (18), we have

κ(p0 + pk + · · ·+ pk[ d
k
]) ≤ η

∑

k-i
|pi| < η

d∑
i=1

|pi| ≤ ηp0.

Hence κ < η by the assumption
∑

1≤ki≤d pki ≥ 0. So our claim is proved.
Our next aim is to show zj = η implies zj+k` = η for all ` ∈ Z. Without loss

of generality, we may assume zd = η. If zd−k 6= η, then by the right side of (18),

p0 > z0pd + z1pd−1 + · · ·+ zd−1p1 + zdp0

≥ −κ
∑

i6=0, k

1≤i≤d

|pi| − (η − 1)|pk|+ ηp0

≥ p0 + (η − 1)(p0 −
∑

1≤i≤d

pi)

≥ p0.

This is a contradiction. So zd+k` = η for all ` ∈ Z. Now (18) become

p0 > z0pd + z1pd−1 + · · ·+ zd−1p1 + zdp0

≥ −κ
∑

k-i
|pi|+ η

∑
k|i
i6=0

pk + ηp0.

By the assumption
∑

k|i
i6=0

pi ≥ 0, we see κ > 0. Moreover

κ
∑

k-i
|pi| > (η − 1)p0.

This shows ∑

1≤i≤d

|pi| >
∑
1≤i≤d

k-i

|pi| > p0,

which is a desired contradiction. ¤
Classification of quadratic CNS polynomials x2 +p1x+p0 was already done by

[9], [10], [5] and [16] in several ways. We reprove this result as an application of
our discussion.

Corollary 3.6. Let P (x) = x2 + p1x + p0 be a quadratic polynomial. Then P (x)
is a CNS polynomial if and only if −1 ≤ p1 ≤ p0 and p0 ≥ 2.

Proof. If P (x) is a CNS polynomial, then p0 ≥ 2 by (2). Since there are no roots
in [−1, 0], we have P (−1) > 0 which shows p1 ≤ p0 and 1-subsum condition
implies −1 ≤ p1.

Conversely if −1 ≤ p1 ≤ p0 and p0 ≥ 2 then P (x) must be expanding. If
p1 < p0, then Theorem 3.2 implies that P (x) is a CNS polynomial as coefficients
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satisfy the dominant condition. The remaining case p1 = p0 is settled down by
(3), a result of B.Kovács. ¤

For an expanding polynomial P (x), (7) gives an algorithmic bound of the set
P . If P (x) satisfies dominant condition, we can get a bound in another way.
Theorem 3.7 is an improvement of Theorem 1 of S.Akiyama and A.Pethő [3],
giving such a bound of P . 2

Theorem 3.7. Assume |p0| >
∑d

i=1 |pi| and ξ =
∑d

i=1 wizi ∈ P. Then we have

∣∣∣∣∣zi − p0

2
∑d

i=0 pi

∣∣∣∣∣ ≤
|p0|

2
(
|p0| −

∑d
i=1 |pi|

) .

Proof. First we prove the case p0 > 0. Putting τ = p0

2(
Pd

i=0 pi)
, by (13), we have

−p0

2
≤

∑
(zi+j − τ)pd−j <

p0

2
.

Let η = maxi∈Z |zi − τ | and choose i such that η = |zi+d − τ |. If zi+d − τ = −η
then

η (|pd|+ |pd−1|+ · · ·+ |p1|) ≥
(

η − 1

2

)
p0.

If zi+d − τ = η then

−η (|pd|+ |pd−1|+ · · ·+ |p1|) <

(
1

2
− η

)
p0.

Thus in any case, we have

η

d∑
i=1

|pi| ≥
(

η − 1

2

)
p0

η ≤ p0

2
(
p0 −

∑d
i=1 |pi|

) ,

which shows our assertion.
Now we wish to show the case p0 < 0. For the moment, we permit negative

leading coefficient pd = −1 and substitute P (x) by −P (x) to make p0 > 0 and
pd = −1. Then we easily see that Proposition 3.1 remains true in the same
notation. Thus the above proof also works for the case p0 < 0. ¤

2Though it is not explicitly mentioned, the bound of Theorem 1 of [3] is nothing but the
bound for P. This fact is easily seen from its proof. Note that we do not assume p0 > 0.
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4. Some remarks on H. Brunotte’s result

H. Brunotte [4] found an interesting algorithm to determine a polynomial is a
CNS polynomial or not. The original proof is not so easy. Recently K. Scheicher
& J.M.Thuswaldner [15] gave a simple proof of a similar result by using finite
automata. In this section, we give another proof of Brunotte’s Lemma based on
the techniques of Section 3. The idea is inspired by [15]. Beside of this, we give
several remarks on Brunotte’s algorithm.

Let us define
σ∗(z1, . . . , zd) = −σ(−z1,−z2, . . . ,−zd),

where σ is defined as in Section 3. As it is seen that σ∗(z1, . . . , zd) = σ(z1 + p0−
1, z2, . . . , zd). Lemma 2 of [4] reads

Lemma 4.1. Let P (x) be a monic polynomial of degree d with p0 ≥ 2. If there is
a set E ⊂ Zd satisfying the following properties, then P (x) is a CNS polynomial.
3

(i) (0, . . . , 0), (−1, 0, . . . , 0), (1, 0, . . . , 0) ∈ E
(ii) (σ(E) ∪ σ∗(E)) ⊆ E.
(iii) For any x ∈ E, there exist a positive integer M such that σM(x) = 0.

Proof. Again let α = x mod P (x). Suppose ξ ∈ R has a canonical expansion and
η ∈ ι(E), we argue that ξ + η also has a canonical expansion. Suppose

T (ξ) =
ξ − k1

α
, T (η) =

η − k2

α
,

where k1, k2 ∈ {0, 1, · · · , p0 − 1}. If k1 + k2 < p0, then

T (ξ + η) =
ξ + η − (k1 + k2)

α
= T (ξ) + T (η).

If k1 + k2 ≥ p0, then k2 > 0 and

T (−η) =
−η − (p0 − k2)

α
.

So we have

T (ξ + η) =
ξ + η − (k1 + k2) + p0

α
= T (ξ)− T (−η).

By the assumption (ii),

−T (−η) = −ι(σ(ι−1(−η))) = ι(σ∗(ι−1(η))) ∈ ι(E).

Repeat this argument, we have for any n,

T n(ξ + η) = T n(ξ) + η∗

3There is a minor difference between (i) and the corresponding assumption of Lemma 2 in
[4], which is

(0, . . . , 0), (−1, 0, . . . , 0), (0, . . . , 0,−1) ∈ E.
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for some η∗ ∈ ι(E). Since ξ has a canonical expansion, so T n(ξ + η) ∈ ι(E) for
a large n. Now from assumption (iii), we conclude that ξ + η has a canonical
expansion.

As ±1 ∈ ι(E) is seen by the assumption (i), ξ has a canonical expansion implies
ξ± 1 have canonical expansions. Note that ξ has canonical expansion implies αξ
has a canonical expansion. Since every element of Z(x) can be obtain from 0 by
these two operations, so every element of R has a canonical expansion. ¤

This Lemma 4.1 gives a handy way to determine whether P (x) is a CNS poly-
nomial or not.

(a): Let E1 = {(0, . . . , 0), (−1, 0, . . . , 0), (1, 0, . . . , 0)}.
(b): If Ei is defined for i < n, then En is defined by En = En−1∪σ(En−1)∪

σ∗(En−1).
(c): If En 6= En−1 then continue this emerging process (b). If En = En−1

then we proceed to the next step (d).
(d): For each element x of En, we confirm that there exists M such that

TM(x) = 0.

Note that En = −En for any n. When P (x) is an expanding polynomial, the
last process (d) will terminate in finite steps since the sequence {T i(x)}i=0,1,2,...

is eventually periodic by Proposition 2.1.
Further it is important to point out that the above emerging process (b) also

terminate in finite steps. Indeed, as P (x) expanding, we know that both σ and
σ∗ are eventually contractive. So the sets En (n = 1, 2, . . . ) must be uniformly
bounded. By the discreteness of Zd in Rd and En ⊃ En−1 we conclude that the
process (b) will certainly stop. Especially, if P (x) is separable then we can give
a concrete bound of the sets En.

Theorem 4.2. If P (x) is an expanding separable polynomial. Let

W =

{
ξ ∈ R

∣∣∣∣ |ξ(θ)| ≤
|p0| − 1

|θ| − 1
for all root θ of P (x)

}
.

Then we have En ⊂ ι(W ) for all n.

Proof. Let us go back to the representation in base {1, α, . . . , αd−1} and consider
the action of T and define T ∗(ξ) = −T (−ξ). As P (x) is expanding, E1 ⊂ ι(W )
is clear. It suffices to show T (W ) ∪ T ∗(W ) ⊂ W . Indeed, it is equivalent to
σ(ι(W )) ∪ σ∗(ι(W )) ⊂ ι(W ), and so we have σ(En) ∪ σ∗(En) ⊂ ι(W ) provided
En ⊂ ι(W ).

One can easily see that T (ξ) = (ξ−k1)/α and T ∗(ξ) = (ξ−k2)/α with k1, k2 ∈
[−p0+1, p0−1]. Let θ be a root of P (x). Then we see that T (ξ(θ)) = (ξ(θ)−k1)/θ
and T1(ξ(θ)) = (ξ(θ)−k2)/θ. Put K(θ) = (|p0|−1)/(|θ|−1). Then |ξ(θ)| ≤ K(θ)
implies ∣∣∣∣

ξ(θ)− k1

θ

∣∣∣∣ ≤
K(θ) + p0 − 1

|θ| = K(θ),
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showing |T (ξ(θ))| ≤ K(θ) and also |T1(ξ(θ))| ≤ K(θ). This shows T (W ) ∪
T ∗(W ) ⊂ W . ¤

Thus we have another algorithm to determine whether an polynomial is CNS.
This bound W in Theorem 4.2 is the same as (7). Thus this algorithm can not
be worse than the one in [12]. If we have a dominant condition as before, then
we can say more.

Theorem 4.3. Let P (x) be a monic polynomial with dominant condition p0 ≥∑d
i=1 |pi|. Then P (x) is a CNS polynomial if and only if every element of

S = {ξ ∈ R | ξ =
d∑

i=1

ziwi and |zi| ≤ 1}

has a canonical expression.

Proof. We need only show that the condition is sufficient. Let

S ′ = {(z1, . . . , zd) | zi ∈ {−1, 0, 1}}.
Then S ′ fulfills the property (i) of Lemma 4.1. Under dominant condition, it is
easy to check that S ′ satisfies the property (ii). The assumption on S implies
that S ′ satisfies the property (iii). Hence P (x) is a CNS polynomial. ¤

Corollary 4.4. Let P (x) be a monic polynomial satisfying p0 >
∑d

i=1 |pi|. Then
P (x) is a CNS polynomial if and only if every element of

{ξ ∈ R | ξ =
d∑

i=1

ziwi and zi = 0, 1}

has a canonical expression.

Proof. Let S ′ be the set defined in Theorem 4.3. Pick any (z1, . . . , zd) ∈ S ′,
it define a infinite word (z1, . . . , zd, zd+1, . . . ). The dominant condition p0 >∑d

i=1 |pi| implies that di ∈ {0, 1} for any i > d. Hence there is an integer
M > 0 such that σM(z1, . . . , zd) = (0, . . . , 0). Hence P (x) is a CNS polynomial
by Lemma 4.1. ¤

5. Characterizations of CNS polynomials with a dominant
condition

This section is inspired by the recent work by K. Scheicher & J.M.Thuswaldner
[15]. We shall give some simple necessary and sufficient conditions of CNS poly-

nomial of degree 3, 4 and 5 under the dominant condition p0 ≥
∑d

i=1 |pi|.
Theorem 3 in S. Akiyama & A. Pethő [3] says that

(20) p` +
d∑

k=`+1

|pk| ≥ 0
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is a necessary condition for CNS polynomials with p0 ≥
∑d

i=1 |pi|. The same idea
allows us to show a slightly stronger assertion under the dominant condition (4).
Namely, if P (x) is a CNS polynomial then

p` +
d∑

k=`+1
pk>0

pk ≥ 0

under (4). To show it, only thing to check is that there are no case εj = −1 under
their notation in [3]. An analogous method allows us to show 4

Lemma 5.1. If P (x) is a CNS polynomial satisfying p0 ≥
∑d

i=1 |pi| , then 1 +
pd−1 + pd−2 ≥ 0.

Proof. If d = 2, then 1 + pd−1 + pd−2 ≥ 0 is clear. Thus we show the case d > 2.
Assume that 1+pd−1+pd−2 < 0 and P (x) is a CNS polynomial. Since 1+pd−1 ≥ 0
by (20), we have pd−2 < 0. If pd−1 ≥ 0 then |pd| + |pd−1| + pd−2 < 0 gives a
contradiction again by (20). Thus we see that pd−1 = −1 and pd−2 < 0 holds. Put

Tm(x) =
∑d−1

i=0 Tm
i (x)αj for x ∈ R. Reviewing the definition of the basis {wi},

we have wj =
∑j−1

k=0 pd+1+k−jα
k. Using this we have Tm

i (x) =
∑d−1

j=i zj+m+1pd+i−j

with zj ∈ Z defined at the beginning of §3. Now we specify x = −1 and define
an integer sequence {zi}∞i=1. By using (5), it is easily seen that zi ∈ {0,±1}. Our
aim is to show that for any non-negative integer m, there exist j that Tm

j (−1) < 0
which proves that P (x) is not a CNS polynomial. This is obviously true when
m = 0. If Tm−1

0 (−1) ≥ 0 then it is shown, similarly as in Theorem 3 in [3], that
there exist j that Tm

j (−1) < 0. Let us assume that Tm−1
0 (−1) < 0. By (5), we

have zm+d = 1. If zm+d−1 ≤ 0 then,

Tm
d−2(−1) = zm+d−1 − zm+d < 0.

If zm+d−1 > 0 then,

Tm
d−3(−1) = zm+d−2 − zm+d−1 + zm+dpd−2 ≤ 1− 1 + pd−2 < 0.

Thus we have shown the Lemma. ¤
Here it may be convenient to summarize necessary conditions for CNS polyno-

mials with (5).

Theorem 5.2. Let P (x) be an expanding polynomial with the dominant condition
(5). Then P (x) is a CNS implies

(a) 1 + pd−1 ≥ 0;
(b) 1 + pd−1 + pd−2 ≥ 0;

(c)
∑d

i=1 pd ≥ 0;

4One might hope that
∑d

k=` pk ≥ 0 for any ` = 1, 2, . . . , d − 1 are necessary for a CNS
polynomial P (x). Unfortunately this is not the case. A counter example is given that

x10 − x9 + x8 − 2x7 + 4x6 + 4x5 + 4x4 − 3x3 − x2 + 20

is a CNS polynomial but pd + pd−1 + pd−2 + pd−3 < 0.
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(d)
∑

2|i,1≤i≤d pd ≥ 0.

Proof. Lemma 5.1 and (20) imply (a) and (b). Condition (c) follows from 1-
subsum condition. We need only prove (d). Suppose not, than by (c), we know∑

2-i,1≤i≤d pd ≥ 0. By using (5), P (x) is not a CNS polynomial since it does not
satisfy 2-subsum condition. ¤
Theorem 5.3. Let P (x) = x3 + p2x

2 + p1x + p0 be a polynomial in Z[x] with
p0 > 1 + |p2| + |p1|. Then P (x) is a CNS polynomial if and only if p2 ≥ 0 and
1 + p2 + p1 ≥ 0.

Proof. Assume that P (x) is a CNS polynomial. Then Theorem 5.2 (b) or (c)
implies 1 + p2 + p1 ≥ 0 and (d) gives p2 ≥ 0. (These facts were shown in
a different way in Proposition 1 of [3].) The sufficiency follows from Theorem
3.2. ¤
Theorem 5.4. Let P (x) = x4 + p3x

3 + p2x
2 + p1x + p0 be a polynomial in Z[x]

with p0 > 1+ |p3|+ |p2|+ |p1|. Then P (x) is a CNS polynomial if and only if five
conditions:

p3 ≥ −1

p2 ≥ −1

p3 + p2 ≥ −1

1 + p3 + p2 + p1 ≥ 0

p3 = −1 ⇒ p1 ≤ −2

holds.

Proof. Assume that P (x) is a CNS polynomial. Theorem 5.2 says the first four
conditions are necessary. Let p3 = −1. Then 1 + p3 + p2 ≥ 0 implies p2 ≥ 0. Let
us consider the 3-subsum condition. As p3 + p0 and p2 are in [0, p0 − 1] ∩ Z, we
see 1 + p1 must be negative.

Now we wish to show the sufficiency. Note that 1 + p3 + p2 ≥ 0 shows that
not both p2 and p3 are negative. First we consider the case p3 = −1. Then
p1 ≤ −2 and p2 ≥ 2. The proof is done by writing a directed graph consist
of 24 = 16 vertices formed by (zi, zi+1, zi+2, zi+3) with zi ∈ {0, 1}. Each vertex
(zi, zi+1, zi+2, zi+3) represents an element of

{ξ ∈ R | ξ =
4∑

i=1

ziwi and zi = 0, 1}

which forms a test set in Corollary 4.4. We write a directed edge from (zi, zi+1, zi+2, zi+3)
to (zi+1, zi+2, zi+3, zi+4) if there is a possibility that

σ(zi, zi+1, zi+2, zi+3) = (zi+1, zi+2, zi+3, zi+4)

under these five conditions. This was done in Figure 1. Here we omit a self
loop from (0, . . . , 0) to itself. As this graph forms a directed tree having an only
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Figure 2. p2 = −1, p1 < 0, Quartic case

terminal vertex (0, 0, 0, 0), we have completed the case p3 = −1. Second we treat
the case p3 ≥ 0 and p2 = −1. If p1 ≥ 0, then as 1+p2 ≥ 0 we can apply Theorem
3.5 to show that P (x) is a CNS polynomial. Let p1 ≤ −1. As 1+p3 +p2 +p1 ≥ 0,
we have p3 ≥ 1 and p3 + p1 ≥ 0. Figure 2 gives a similar directed graph showing
that P (x) is a CNS polynomial.

Finally if p3 ≥ 0 and p2 ≥ 0 then as 1+p3 +p2 +p1 ≥ 0 we can apply Theorem
3.2 to see that P (x) is a CNS polynomial. Thus we have shown the assertion. ¤
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Remark 5.5. Proofs of Theorem 5.3 and 5.4 shows that CNS polynomial with
a dominant condition (4) is completely characterized by the known necessary
conditions: k-subsum condition, (20) and Lemma 5.1 provided the degree of the
polynomial is less than 5.

Theorem 5.6. Let P (x) = x5 + p4x
4 + p3x

3 + p2x
2 + p1x + p0 be a polynomial

in Z[x] with p0 > 1 + |p4|+ |p3|+ |p2|+ |p1|. Then P (x) is a CNS polynomial if
and only if five conditions:

p2 + p4 ≥ 0

1 + p4 + p3 + p2 + p1 ≥ 0

p4 < 0 ⇒ p4 = −1, p3 ≥ 1, p1 ≤ −2

p3 < 0, p1 + p4 ≥ 0 ⇒ p3 ≥ −1, p2 ≤ −2

p3 < 0, p1 + p4 < 0 ⇒ p4 ≥ 0, p4 + p3 ≥ 0

holds.

Proof. Assume that P (x) is a CNS polynomial. First two conditions are shown
in Theorem 5.2. Assume that p4 < 0. In this case we see by 1 + p4 ≥ 0 and
1 + p4 + p3 ≥ 0 that p4 = −1 and p3 ≥ 0. p2 + p4 ≥ 0 shows p2 ≥ 1. Using
4-subsum condition, 1 + p1 must be negative. Further we can show that p3 ≥ 1.
For if p3 = 0 then 1-subsum condition implies p2 + p1 ≥ 0 and so we can confirm
that

Ξ = (0011)∞

gives an element of P . Thus we have shown that third necessary condition of
Theorem 5.6.

Next consider the case p3 < 0. As stated above, we have p4 ≥ 0. Further
assume that p1 + p4 ≥ 0. By 3-subsum condition, 1 + p2 < 0. It is also seen that
p3 ≥ −1. For if p3 ≤ −2 then we can construct a bi-infinite word

Ξ =

{
(01001)∞ p3 + p1 ≥ 0

(01001011)∞ p3 + p1 < 0

which corresponds to an element of P . This shows the 4-th necessary condition.
Assume that p3 < 0 and p1 + p4 < 0. If p4 + p3 < 0 then we see that

Ξ =

{
(1001100)∞ 1 + p4 + p1 ≥ 0

(1001)∞ 1 + p4 + p1 < 0

is a corresponding word of a non zero element of P . Thus we have proved five
necessary conditions.

We now prove the sufficiency. First note that p4 or p3 can not be an isolated
negative coefficient by the claim before Theorem 3.5. Since 1+p4+p3+p2+p1 ≥ 0
and p2 + p4 ≥ 0 are already assumed, Theorem 3.2 and 3.5 can be applied
when there are at most one negative coefficient. Thus we only need to show the
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sufficiency in the case that there are at least two negative coefficients. In such 4
subcases, we can write down similar directed graphs used in the proof of Theorem
5.4:

(1): p4 = −1
(2): p3 < 0 and p1 + p4 ≥ 0
(3): p3 < 0 and p1 + p4 < 0
(4): p4 ≥ 0, p3 ≥ 0, p1 < 0 and p2 < 0

In fact, the case (1) is done in Figure 3. In the case (2), it is easy to confirm a
directed graph of Figure 4. Here we performed out-going amalgamation for some
vertices on the original graphs to simplify them. This means that if two vertices
v1, v2 have exactly the same follower vertices then such vertices are unified into
one vertex (v1, v2) in their graph expression. Last two cases are also completed
easily. We left these cases to the reader.

¤
Remark 5.7. Theorem 5.6 is restated as follows under the same condition. The
polynomial P (x) is a CNS polynomial if and only if it satisfies k-subsum condition
(for k = 1, 2, 3, 4), p4 ≥ −1, p3 + p4 ≥ 0 and

p1 + p4 ≥ 0 ⇒ p3 ≥ −1.

To show this, we need only to review the above proof that all five conditions in
Theorem 5.6 is derived by these conditions.

Note that last two conditions are not seen by combining k-subsum conditions,
(20) and Lemma 5.1. Thus unfortunately, known necessary conditions on CNS
are not enough to characterize CNS polynomials of degree 5.

Remark 5.8. Let us fix a positive integer d and consider expanding polynomials
of degree d under the dominant condition (4). We may say that Corollary 4.4
provides an algorithm to describe all such CNS polynomials. However it seems
impractical to accomplish it for a large degree.

Indeed, possible lengths of periods of P are not larger than 2d. So we can
characterize polynomials which admits non zero periodic words Ξ by finite sets
of inequalities. Thus solving all these inequalities, we can describe the set of all
CNS polynomials by ruling out such family of non CNS polynomials.
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[8] I. Kátai and I. Kőrnyei, On number systems in algebraic number fields, Publ. Math.
Debrecen 41 no. 3–4 (1992) 289–294.
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[11] B. Kovács, Canonical number systems in algebraic number fields, Acta Math. Acad. Sci.
Hungar. 37 (1981), 405–407.
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