Auto-Similarity in Rational Base Number Systems

Shigeki Akiyama ${ }^{1}$, Victor Marsault ${ }^{2 \star}$, and Jacques Sakarovitch ${ }^{2}$
${ }^{1}$ University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 350-8571 Japan
${ }^{2}$ Telecom-ParisTech and CNRS, 46 rue Barrault, 75013 Paris, France

Abstract

This work is a contribution to the study of set of the representations of integers in a rational base number system. This prefix-closed subset of the free monoid is naturally represented as a highly non regular tree whose nodes are the integers and whose subtrees are all distinct. With every node of that tree is then associated a minimal infinite word (and a maximal infinite word). The main result is that a sequential transducer which computes for all n the minimal word associated with $n+1$ from the one associated with n, has essentially the same underlying graph as the tree itself. These infinite words are then interpreted as representations of real numbers; the difference between the numbers represented by the maximal and minimal word associated with n is called the span of n. The preceding construction allows to characterise the topological closure of the set of spans.

1 Introduction

The purpose of this work is a further exploration and a better understanding of the set of words that represent integers in a rational base number systems. These numeration systems have been introduced and studied in [1], leading to some progress in the results around the so-called Malher's problem ($c f$. [5]). We give below a precise definition of rational base number systems and of the representation of numbers in such a system. But one can hint at the results established in this paper by just looking at the figure showing the 'representation tree' of the integers - that is, the compact way of describing the words that represent the integers - in a rational base number system (Figure 1b for the base $\frac{3}{2}$) and by comparison with the representation tree (or trie) in an analogous integer base number system (Figure 1a for the base 3).

In the latter, all subtrees are the same and equal to the full ternary tree, whereas in the former, all subtrees are different. As a result, the language of the representations of the integers is not a regular language. It may even be shown that the language satisfies no iteration lemma of any kind ([6]). With the hope of finding some order or regularity within what seems to be closer to complete randomness (which, on the other hand, is not established either) we consider the minimal words originating from every node of the tree.

[^0]In the case of an integer base, this is meaningless: all these minimal words are equal to 0^{ω}. In the case of a rational base these words are on the contrary all distinct and none are even ultimately periodic (as no ultimately periodic word can be found in this tree). In order to find some invariant of all these distinct words, or at least a relationship between them, we have studied the function that maps the minimal word w_{n}^{-}associated with n onto the one associated with $n+1$, and tried to describe this function by a (possibly infinite) transducer.

Fig. 1: Representation trees in two number systems

The computation of such a transducer in the case of the base $\frac{3}{2}$, and more generally in the case of a base $\frac{p}{q}$ with $p=2 q-1$, leads to a surprising and unexpected result. If $\mathcal{T}_{\frac{p}{q}}$ denotes the representation tree - viewed as an infinite automaton, - the transducer, denoted by $\mathcal{D}_{\frac{p}{q}}$, is obtained by replacing the label of every transition of $\mathcal{T}_{\frac{p}{q}}$ by a set of pairs of letters that depends upon this label only. In other words, the underlying graphs of $\mathcal{T}_{\frac{p}{q}}$ and $\mathcal{D}_{\frac{p}{q}}$ coincide, and $\mathcal{D}_{\frac{p}{q}}$ is obtained from $\mathcal{T}_{\frac{p}{q}}$ by a substitution from the alphabet of digits into the alphabet of pairs of digits, in this special and remarkable case.

The general case is hardly more difficult to describe, once it has been understood. Let $B_{p, q}$ be the digit alphabet with $2 q-1$ (consecutive) elementsand
whose greatest element is $p-1$. If $p>2 q-1$, then $B_{p, q}$ is contained in A_{p}; it consists of A_{p}, enlarged with enough negative digits otherwise.

From $\mathcal{T}_{\frac{p}{q}}$ and with the digit alphabet $B_{p, q}$, we first define another 'automaton' denoted by $\widehat{\mathcal{T}_{\frac{p}{q}}}$: either by deleting the transitions of $\mathcal{T}_{\frac{p}{q}}$ whose labels do not belong to $B_{p, q}$ in the case where $p>2 q-1$ or, in the case where $p<2 q-1$ by adding transitions labelled with the new negative digits. Then, $\mathcal{D} \frac{p}{q}$ is obtained from $\widehat{\mathcal{T}_{\frac{p}{q}}}$ exactly as above, by a substitution from the alphabet of digits into the alphabet of pairs of digits. This construction of $\mathcal{D} \frac{p}{q}$, which we call the derived transducer, and the proof of its correctness are presented in Section 3. In the following Section 4, we turn to a problem seems to be of different nature.

In [1], the tree $\mathcal{T}_{\frac{p}{q}}$, which is built from the representations of integers, is used to define the representations of real numbers: the label of an infinite branch of the tree is the development 'after the decimal point' of a real number and the drawing of the tree as a fractal object - like in Figure 1b - is fully justified by this point of view. The same idea leads to the definition of the (renormalised) span of a node n of the representation tree: it is the difference between the reals represented respectively by the maximal and the minimal words originating in the node n (see Remark 1, page 11).

Again, this notion is meaningless in the case of an integer base p : the span of node n is always 1. And again, the notion is far more richer and complex in the case of a rational base $\frac{p}{q}$. The trivial relationship between the minimal word originating at node $n+\stackrel{q}{1}$ and the maximal word originating at node n leads to the connexion between the construction of the derived transducer $\mathcal{D} \frac{p}{q}$ and the description of the set of spans $\mathrm{S}_{\frac{p}{q}}$. Not only the digit-wise difference between maximal and minimal words is written on the alphabet $B_{p, q}$, but all these 'difference words' are infinite branches in the tree $\widehat{\mathcal{T} \frac{p}{q}}$. This is explained in Section 4. From the structure of $\widehat{\mathcal{T}} \widehat{\frac{p}{q}}$, it then follows (Theorem 3) that the topological closure of $S \frac{p}{q}$ is an interval in the case where $p \leqslant 2 q-1$, and a set with empty interior in the case where $p>2 q-1$.

In conclusion, we have shown that a straightforward computation of w_{n+1}^{-} from w_{n}^{-}requires the same structure as $\mathcal{T}_{\frac{p}{q}}$ itself - despite the fact that every minimal word looks as complex as the whole tree - whether it be performed directly on the words, or indirectly via the span of the nodes. It is this phenomenon that we call auto-similarity of the structure $\mathcal{T}_{\frac{p}{q}}$. In this process, the number systems where $p=2 q-1$ appear to mark the boundary between two different behaviours, in a more deeper way than that was described in the first study of rational base number systems [1].

This paper is meant to be self-contained and gives, in particular, all necessary definitions concerning rational base number systems. However, the reference [1] where these systems have been defined and the sets of representations first studied will probably be useful. In order to meet the space constraints, all proofs and even some figures have been removed. The reader may find them in a complete version downloadable from arXiv [2].

2 Preliminaries and Notations

2.1 Numbers and Words

Given two real numbers x and y, we denote by $\frac{x}{y}$ their division in \mathbb{R} (even if x or y happens to be integers), by $[x, y]$ the corresponding interval of \mathbb{R} and by $\lceil x\rceil$ the integer n such that $(n-1)<x \leqslant n$. On the other hand, given two positive integers n and m, we denote by $n \div m$ and $n \% m$ respectively the quotient and the remainder of the Euclidean division of n by m, that is, $\quad n=(n \div m) m+(n \% m)$ and $0 \leqslant(n \% m)<m$. Additionally, we denote by $\llbracket n, m \rrbracket$ the integer inter$\operatorname{val}\{n,(n+1), \ldots, m\}$.

An alphabet is a finite set of symbols called letters or digits when they are integers. Given an alphabet A, we consider both the sets of finite and infinite words over A respectively denoted by A^{*} and A^{ω} and we denote the empty word by ε. For every positive integer p, we denote by A_{p} the canonical digit alphabet of the base p number system: $A_{p}=\{0,1, \ldots, p-1\}$. For clarity, we denote finite words by u, v and infinite words by w. The concatenation of two words u, v is either explicitly denoted by a low dot, as in $u . v$, or implicitly when there is no ambiguity, as in $u v$. A finite word u is said to be a prefix of a finite word v (resp. an infinite word w) if there exists a finite word v^{\prime} (resp. an infinite word w^{\prime}) such that $v=u v^{\prime}$ (resp. $\left.w=u w^{\prime}\right)$. The set of subsets of an alphabet A is denoted by $\mathfrak{P}(A)$.

2.2 Automata and Transducers

We deal here with a very special class of automata and transducers only: they are infinite, their state set is \mathbb{N}, they are deterministic (or letter-to-letter and sequential), the initial state is 0 , and all states are final.

As usual, an automaton \mathcal{X} over A is denoted by a 5 -tuple $\mathcal{X}=\langle\mathbb{N}, A, \delta, 0, \mathbb{N}\rangle$, where $\delta: \mathbb{N} \times A \rightarrow \mathbb{N}$ is the transition function. The partial function δ is extended to $\mathbb{N} \times A^{*}$, and $\delta(n, u)=m$ is also denoted by $n \cdot u=m$ or by $n \xrightarrow{u} m$. Given an integer n, every state $n \cdot a$ for some a in A is called a successor of n. A word u in A^{*} (resp. a word w in A^{ω}) is accepted by \mathcal{X} if $0 \cdot u$ exists (resp. if $0 \cdot v$ exists for every finite prefix v of w). The language of finite words (resp. of infinite words) accepted by \mathcal{X} is denoted by $L(\mathcal{X})$ (resp. by $\mathcal{L}(\mathcal{X})$).

For transducers, we essentially use the notation of [3], adapted for the infinite case. A transducer is an automaton whose transitions are labelled by (set of) pairs of letters. Formally, it is represented by a tuple $\mathcal{Y}=\langle\mathbb{N}, A \times B, \delta, \eta, 0, \mathbb{N}\rangle$ where $\langle\mathbb{N}, A, \delta, 0, \mathbb{N}\rangle$ is an automaton, called the underlying input automaton of \mathcal{Y}, A is called the input alphabet, B is the output alphabet and $\eta: \mathbb{N} \times A \rightarrow B$ is the output function. The transition function δ is extended as in automata, and η is extended to $\mathbb{N} \times A^{*} \rightarrow B^{*}$ by $\eta(n, \varepsilon)=\varepsilon$ and $\eta(n, u a)=\eta(n, u) \cdot \eta(n \cdot u, a)$, and $\eta(n, u)$ is also denoted by $n * u$ for short.

Moreover, given two finite words u and v, we denote by $n \xrightarrow{u \mid v} m$ the combination of $n \cdot u=m$ and $n * u=v$. We say that the image of a finite word u by \mathcal{Y}, denoted by $\mathcal{Y}(u)$, is the word v, if it exists, such that $0 \xrightarrow{u \mid v} k$
for some k. Similarly, the image of the infinite word w is w^{\prime} if, for every finite prefix u of $w, \mathcal{Y}(u)$ is a prefix of w^{\prime}.

2.3 Rational Base Number System

Let p and q be two co-prime integers such that $p>q>1$. Given a positive ieger N, let us write $N_{0}=N$ and define the sequence $\left(N_{i}\right)_{i \in \mathbb{N}}$ by all $i>0$,

$$
q N_{i}=p N_{(i+1)}+a_{i} \quad \text { for all } i>0
$$

where a_{i} is the remainder of the Euclidean division of $q \mathbb{N}_{i}$ by p, hence in the alphabet $A_{p}=\llbracket 0, p-1 \rrbracket$. Since $p>q$, the sequence $\left(N_{i}\right)_{i \in \mathbb{N}}$ is strictly decreasing and eventually stops at $N_{k+1}=0$. Moreover, it holds that

$$
N=\sum_{i=0}^{k} \frac{a_{i}}{q}\left(\frac{p}{q}\right)^{i} .
$$

The evaluation map π is derived from this formula. Given a word $a_{n} a_{n-1} \cdots a_{0}$ over A_{p}, and indeed over any alphabet of digits, its value is defined by

$$
\begin{equation*}
\pi\left(a_{n} a_{n-1} \cdots a_{0}\right)=\sum_{i=0}^{n} \frac{a_{i}}{q}\left(\frac{p}{q}\right)^{i} . \tag{1}
\end{equation*}
$$

Conversely, a word u in A_{p}^{*} is called a $\frac{p}{q}$-representation of an integer x if $\pi(u)=x$. Since the representation is unique up to leading 0 's (see [1, Theorem 1]), u is denoted by $\langle x\rangle_{\frac{p}{q}}$ (or $\langle x\rangle$ for short) and can be computed with the modified Euclidean division algorithm above. By convention, the representation of 0 is the empty word ε. The set of all $\frac{p}{q}$-representations of integers is denoted by $L_{\frac{p}{q}}$:

$$
L_{\frac{p}{q}}=\left\{\left.\langle n\rangle_{\frac{p}{q}} \right\rvert\, n \in \mathbb{N}\right\} .
$$

It should be noted that a rational base number system is not a β-numeration - where the representation of a number is computed by the (greedy) Rényi algorithm (cf. [4, Chapter 7]) - in the special case where β is a rational number. In such a system, the digit set is $\left\{0,1, \ldots,\left\lceil\frac{p}{q}\right\rceil\right\}$ and the weight of the i-th leftmost digit is $\left(\frac{p}{q}\right)^{i}$; whereas the rational base number system, they are $\{0,1 \ldots(p-1)\}$ and $\frac{1}{q}\left(\frac{p}{q}\right)^{i}$ respectively.

It is immediate that $L_{\frac{p}{q}}$ is prefix-closed (since, in the modified Euclidean division algorithm $\left.\langle N\rangle={ }^{q} N_{1}\right\rangle \cdot a_{0}$) and right-extendable (for every representation $\langle n\rangle$, there exists (at least) an a in A_{p} such that q divides ($n p+a$) and then $\left.\left\langle\frac{n p+a}{q}\right\rangle=\langle n\rangle \cdot a\right)$. As a consequence, $L_{\frac{p}{q}}$ can be represented as an infinite tree, or 'trie' (cf. Figure 2).

It is known that $L_{\frac{p}{q}}$ is not rational (not even context-free), and the following automaton (accepting indeed the language $0^{*} L_{\frac{p}{q}}$) is infinite.

Fig. 2: The tree representation of the language $L_{\frac{3}{2}}$

Definition 1. Let $\tau_{\frac{p}{q}}: \mathbb{N} \times \mathbb{Z} \rightarrow \mathbb{N}$ be the (partial) function defined ${ }^{3}$ by:

$$
\begin{equation*}
\forall n \in \mathbb{N}, \forall a \in \mathbb{Z} \quad \tau_{\frac{p}{q}}(n, a)=\left(\frac{n p+a}{q}\right) \quad \text { if }(n p+a) \text { is divisible by } q . \tag{2}
\end{equation*}
$$

We denote ${ }^{4}$ by $\mathcal{T}_{\frac{p}{q}}$ the automaton $\mathcal{T}_{\frac{p}{q}}=\left\langle\mathbb{N}, A_{p}, \tau_{\frac{p}{q}}, 0, \mathbb{N}\right\rangle$.
In $\mathcal{T}_{\frac{p}{q}}$, we then have the transitions $n \xrightarrow{a}\left(\frac{n p+a}{q}\right)$ for every n in \mathbb{N}, and every a in A_{p} such that $(n p+a)$ is divisible by q. The tree representation of $L \frac{p}{q}$, as in Figure 2 augmented by an additional loop labelled by 0 on the state 0 becomes a representation of $\mathcal{T}_{\frac{3}{2}}$.

We call minimal alphabet the subalphabet $A_{q}=\llbracket 0, q-1 \rrbracket$ of A_{p} and respectively maximal alphabet the subalphabet $\llbracket(p-q),(p-1) \rrbracket$. Any letter of A_{q} is then called a minimal letter, maximal letter being defined analogously. The definition of $\tau_{\frac{p}{q}}$ implies that every state of $\mathcal{T}_{\frac{p}{q}}$ has a successor by a unique minimal (resp. maximal) letter.

[^1]Definition 2 (minimal word). A minimal word (in the $\frac{p}{q}$-system) is an infinite word in A_{q}^{ω} labelling an (infinite) path of $\mathcal{T}_{\frac{p}{q}}$ (not necessarily starting from the initial state 0).

It is immediate that, for every n in \mathbb{N}, there exists a unique infinite word in A_{q}^{ω} starting from the state n in $\mathcal{T}_{\frac{p}{q}}$. We call this word the minimal word associated with n and denote it by w_{n}^{-}. Additionally, we will use the term minimal outgoing label of n, to designate the first letter of w_{n}^{-}and minimal successor of n the unique successor of n by a minimal letter.

We define in a similar way the maximal word w_{n}^{+}associated with n.

3 The Derived Transducer

The goal of this section is to build a sequential letter-to-letter transducer $A_{q} \times A_{q}$ realising the function $w_{n}^{-} \mapsto w_{(n+1)}^{-}$. We call this transducer the derived transducer and denote it by $\mathcal{D}_{\frac{p}{q}}$. It will be obtained from $\mathcal{T}_{\frac{p}{q}}$ by a local transformation and this is the subject of Section 3.1.

3.1 From $\mathcal{T}_{\frac{p}{q}}$ to $\mathcal{D}_{\frac{p}{q}}$

The transformation of $\mathcal{T}_{\frac{p}{q}}$ into $\mathcal{D}_{\frac{p}{q}}$ is a two-step process. First, the structure of $\mathcal{T}_{\frac{p}{q}}$ is locally modified, by changing the alphabet, and a new automaton $\widehat{\mathcal{T}_{\frac{p}{q}}^{q}}$ is obtained. The second step consists in replacing the labels in $\widehat{\mathcal{T}_{\frac{p}{q}}}$ by a subset of $A_{q} \times A_{q}$ by means of a substitution (meaning that two transitions of $\widehat{\mathcal{T}} \frac{p}{q}$ labelled by the same letter will be replaced by the same set of pair of letters) and produces $\mathcal{D}_{\frac{p}{q}}$.

Changing the Alphabet We write $B_{p, q}=\llbracket p-(2 q-1),(p-1) \rrbracket$, that is $B_{p, q}$ is the alphabet whose maximal element is $p-1$ and containing $2 q-1$ consecutive digits. In particular, if $p=(2 q-1), B_{p, q}=A_{p}$; if $p<(2 q-1), B_{p, q}$ contains negative digits; and if $p>(2 q-1), B_{p, q}$ is an uppermost subset of A_{p}. Note that $B_{p, q}$ is always of cardinal $(2 q-1)$, an odd number, that the digit $(p-q)$ is then the centre of $B_{p, q}$ and that its maximal element $p-1$ coincides with the one of A_{p}.

The automaton $\widehat{\mathcal{T}_{\frac{p}{q}}}$ is then defined by:

$$
\widehat{\mathcal{T}_{\frac{p}{q}}}=\left\langle\mathbb{N}, B_{p, q}, \tau_{\frac{p}{q}}, 0, \mathbb{N}\right\rangle .
$$

This is possible, even if $B_{p, q}$ is larger than A_{p} because, in Equation 2, $\tau_{\frac{p}{q}}$ is defined on $\mathbb{N} \times \mathbb{Z}$, hence on $\mathbb{N} \times B_{p, q}$.

Figure 3 shows an example of the case when p is strictly smaller than $2 q-1$, that is, transitions are added (thick arrows in the figure). The resulting automaton is a DAG (more complex than a tree with one loop).

Fig. 3: Transforming $\mathcal{T}_{\frac{4}{3}}$ into $\widehat{\mathcal{T}_{\frac{4}{3}}}$

Figure 4a shows an example of the case when p is strictly greater than $2 q-1$, that is, transitions are removed (dotted arrows in the figure). In this case, the resulting automaton is a forest (that is, an infinite union of trees). The accessible part is the tree rooted in 0 . The other trees of the forest are not accessible; they are kept in $\widehat{\mathcal{T}_{\frac{p}{q}}}$, as they will come into play at Section 4. Furthermore, as already noted, if $p=(2 q-1), B_{p, q}=A_{p}$ and $\mathcal{T}_{\frac{p}{q}}=\widehat{\mathcal{T}_{\frac{p}{q}}}$.

(a) Transforming $\mathcal{T}_{\frac{7}{3}}$ into $\widehat{\mathcal{T}_{\frac{7}{3}}}$

(b) The derived transducer $\mathcal{D}_{\frac{7}{3}}$

Fig. 4: From $\mathcal{T}_{\frac{7}{3}}$ to $\mathcal{D}_{\frac{7}{3}}$

This construction ensures that every state of $\widehat{\mathcal{T}_{\frac{p}{q}}}$ congruent to -1 modulo q has a unique successor and that every other state has exactly two successors.

Changing the Labels Every label of $\widehat{\mathcal{T}_{\frac{p}{q}}}$ (which is a letter of $B_{p, q}$) is replaced by a set of pairs of digits in $A_{q} \times A_{q}$. The label replacement function $\omega_{\frac{p}{q}}: B_{p, q} \rightarrow \mathfrak{P}\left(A_{q} \times A_{q}\right)$ (or ω for short), is more easily defined in two steps. First, the function $\bar{\omega}$ computes the distance of the input to the centre of $B_{p, q}$: $\bar{\omega}(a)=a-(p-q)$, for every a in $B_{p, q}$. Then, the image of a by ω is the set of pairs of letters in A_{q} whose difference is $\bar{\omega}(a)$:

$$
\begin{equation*}
\forall a \in B_{p, q} \quad \omega(a)=\left\{(b \mid c) \in A_{q} \times A_{q} \mid c-b=\bar{\omega}(a)\right\} \tag{3}
\end{equation*}
$$

Example 1 (Case $\frac{3}{2}$). The functions $\bar{\omega}_{\frac{3}{2}}$ and $\omega_{\frac{3}{2}}$ are as follows:

$$
\begin{array}{ll|l}
\bar{\omega}_{\frac{3}{2}}: 0 \longmapsto-1 & \left.\begin{array}{l}
\omega_{\frac{3}{2}}: 0 \longmapsto\{1 \mid 0\} \\
\bar{\omega}_{\frac{3}{2}}: 1 \longmapsto \\
\bar{\omega}_{\frac{3}{2}}: 2 \longmapsto
\end{array} \right\rvert\, \begin{array}{l}
\omega_{\frac{3}{2}}: 1 \longmapsto\{0|0,1| 1\} \\
\omega_{\frac{3}{2}}: 2 \longmapsto\{0 \mid 1\}
\end{array}
\end{array}
$$

and Fig. 5 shows $\mathcal{D}_{\frac{3}{2}}$ ($D_{\frac{7}{3}}$ has been placed at Figure 4 b in anticipation).

Fig. 5: The derived transducer $\mathcal{D}_{\frac{3}{2}}$

Formally, the transducer $\mathcal{D}_{\frac{p}{q}}=\left\langle\mathbb{N}, A_{q} \times A_{q}, \delta, \eta, 0, \mathbb{N}\right\rangle$ is defined implicitly or, more precisely, the transition function δ and the output function η are implicit functions defined by the following statement:

$$
\begin{array}{r}
\forall n \in \mathbb{N}, \forall a \in B_{p, q}, \quad \forall(b, c) \in \omega(a) \\
\begin{array}{r}
\tau_{\frac{p}{q}}(n, a) \text { defined } \quad \Longrightarrow \quad n \xrightarrow{b \mid c} \tau_{\frac{p}{q}}(n, a) \quad \text { is a transition of } \mathcal{D}_{\frac{p}{q}}, \\
\quad \text { that is, } \delta(n, b)=\tau_{\frac{p}{q}}(n, a) \text { and } \eta(n, b)=c .
\end{array}
\end{array}
$$

In other words, the transitions of $\mathcal{D} \frac{p}{q}$ are labelled as follows: if $n \equiv-1[q]$, the state n has exactly one outgoing transition with labels $0|0,1| 1, \ldots, q-1 \mid q-1$. Otherwise, the state n has two outgoing transitions. If we write $k=a-(p-q)$ where a is the maximal outgoing label of n in $\mathcal{T}_{\frac{p}{q}}$: the label of the upper transition is $0|k, 1| k+1, \ldots,(q-1-k) \mid q-1$; while the label of the lower transition is $q-k|0,(q-k+1)| 1, \ldots, q-1 \mid k-1$.

The transducer constructed in this manner is sequential and input-complete, as stated by the following lemma.

Lemma 1. For every state n of $\mathcal{D}_{\frac{p}{q}}$ and every letter b of A_{q}, there exists a unique state m and a unique letter c^{q} such that $n \xrightarrow{b \mid c} m$.

Corollary 1. For every infinite word w in $A_{q}^{\omega}, \mathcal{D}_{\frac{p}{q}}(w)$ exists and is unique.

3.2 Correctness of $\mathcal{D}_{\frac{p}{q}}$

It remains to establish that $\mathcal{D}_{\frac{p}{q}}$ has the expected behaviour, as stated below.
Theorem 1. For every n in \mathbb{N}, $\mathcal{D}_{\frac{p}{q}}\left(w_{n}^{-}\right)=w_{(n+1)}^{-}$.
The proof of Theorem 1 relies on the equivalent (and more explicit) definition of the transitions of $\mathcal{D}_{\frac{p}{q}}$, stated in the following proposition.

Proposition 1. If $n \xrightarrow{b \mid c} m$ is a transition of $\mathcal{D}_{\frac{p}{q}}$, then

$$
c=(b-(n+1) p) \% q \quad \text { and } \quad m=\left\lceil\frac{(n+1) p-b}{q}-1\right\rceil .
$$

In the case of finite words, a stronger version can be stated.
Theorem 2. Given a base $\frac{p}{q}$ and two words u, v in A_{q}^{*}, the image of u by $\mathcal{D} \frac{p}{q}$ is v if and only if there exists an integer n such that u is a prefix of w_{n}^{-}and v is a prefix of w_{n+1}^{-}.

Theorem 2 is purposely stated on finite words and a similar statement for infinite words would be false: for every infinite word w of $A_{q}^{\omega}, \mathcal{D}_{\frac{p}{q}}(w)$ exists, hence there are uncountably many pairs of infinite words $w \left\lvert\, \mathcal{D}_{\frac{p}{q}}(w)\right.$ accepted by $\mathcal{D}_{\frac{p}{q}}$ while there are only countably many pairs $w_{n}^{-} \mid w_{n+1}^{-}$.

4 Span of a Node

Lets us consider now the real value of infinite words. We denote by $\rho: A_{p}^{\omega} \rightarrow \mathbb{R}$, the real evaluation function, defined as follows:

$$
\begin{equation*}
\rho\left(a_{1} a_{2} \cdots a_{n} \cdots\right)=\sum_{i \geqslant 0} \frac{a_{i}}{q}\left(\frac{p}{q}\right)^{-i} . \tag{5}
\end{equation*}
$$

We denote by $W_{\frac{p}{q}}$ the language of infinite words $\mathcal{L}\left(\mathcal{T}_{\frac{p}{q}}\right)$. It is proven in [1, Theorem 2] that $\rho\left(W_{\frac{p}{q}}\right)$ is the interval $\left[0, \rho\left(w_{0}^{+}\right)\right]$. By extension, we denote by $W_{\frac{p}{q}, n}$ (or, for short, W_{n}) the language of infinite words $\langle n\rangle^{-1} W_{\frac{p}{q}}$. Intuitively, an infinite word w over A_{p} is in W_{n} if $n \cdot u$ exists in $\mathcal{T}_{\frac{p}{q}}$ for every finite prefix u of w. Analogously to $W_{\frac{p}{q}}$, the following holds.
Lemma 2. For every integer $n, \rho\left(W_{\frac{p}{q}, n}\right)$ is the interval $\left[\rho\left(w_{n}^{-}\right), \rho\left(w_{n}^{+}\right)\right]$.
Definition 3. For every integer n, the span of n, denoted by $\operatorname{span}(n)$, is the size of $\rho\left(W_{n}\right): \operatorname{span}(n)=\left(\rho\left(w_{n}^{+}\right)-\rho\left(w_{n}^{-}\right)\right)$.

Remark 1. Let us stress that what we call the span of the node n is not, in the fractal drawing (Figure 1b), the width of the subtree rooted in n. This quantity is obviously decreasing exponentially with the depth of the node n and the set of these has 0 as unique accumulation point. What we call span is this quantity renormalised by multiplication by $\left(\frac{p}{q}\right)^{k}$, where k is the depth of the node n.

Let a be a letter from the minimal alphabet $A_{q}=\llbracket 0,(q-1) \rrbracket$ and b a letter from the maximal alphabet $\llbracket(p-q),(p-1) \rrbracket$. The integer $(b-a)$ is necessarily in $\llbracket p-(2 q-1), p-1 \rrbracket=B_{p, q}$. Hence, through this digit-wise subtraction, denoted by ' $\ominus^{\prime},\left(w_{n}^{+} \ominus w_{n}^{-}\right)$is a word over $B_{p, q}$, and is called the span-word of n. It is routine to check that the following statement is true.

Lemma 3. For all integer $n, \operatorname{span}(n)=\rho\left(w_{n}^{+} \ominus w_{n}^{-}\right)$.
Let $S_{\frac{p}{q}}$ be the set of real numbers $S_{\frac{p}{q}}=\{\operatorname{span}(n) \mid n \in \mathbb{N}\}$; the following statement holds.

Theorem 3.

(i) If $p \leqslant 2 q-1, \mathrm{~S}_{\frac{p}{q}}$ is dense in $\left[0, \rho\left(w_{0}^{+}\right)\right]$.
(ii) If $p>2 q-1, \mathrm{~S}_{\frac{p}{q}}$ is nowhere dense.

The key to Theorem 3 is the connexion between the span-words and $\widehat{\mathcal{T}_{\frac{p}{q}}}$, achieved by Theorem 4 and Proposition 3.

Theorem 4. All span-words are accepted by $\widehat{\mathcal{T}_{\frac{p}{q}}}$.
The proof of this theorem is a direct consequence of Proposition 2, below and requires more definitions. There exists a (trivial) map m from the minimal alphabet to the maximal alphabet, such that, for all integer $n, m\left(w_{n+1}^{-}\right)=w_{n}^{+}$.

$$
\begin{aligned}
m: \quad A_{q} & \longrightarrow \llbracket(p-q),(p-1) \rrbracket \\
a & \longmapsto m(a)=\operatorname{maxLetter}(a+p)
\end{aligned}
$$

where maxLetter (x) is the greatest integer congruent to x modulo q and strictly smaller than p. By extending m to A_{q}^{ω}, Theorem 4 reduces to the statement that $\widehat{\mathcal{T}} \frac{p}{q}$ accepts $\left(m\left(w_{n+1}^{-}\right) \ominus w_{n}^{-}\right)$for every n :

Proposition 2. If $w \mid w^{\prime}$ is a pair of infinite words accepted by $\mathcal{D}_{\frac{p}{q}}$ then $\widehat{\mathcal{T}_{\frac{p}{q}}}$ accepts the word $\left(m\left(w^{\prime}\right) \ominus w\right)$.

Analogously to the case of $\mathcal{D} \frac{p}{q}, \widehat{\mathcal{T}_{\frac{p}{q}}}$ accepts uncountably many infinite words, therefore words that are not $\left(w_{n}^{+} \ominus w_{n}^{-}\right)$for any n. That being said, it seems to be the best result we can hope for, as the following two statements hold.
Proposition 3. Every finite word accepted by $\widehat{\mathcal{T}_{\frac{p}{q}}}$ is the prefix of a span-word.
Corollary 2. The language of infinite words of $\widehat{\mathcal{T}_{\frac{p}{q}}}$ is the topological closure of the span-words.

5 Conclusion

In the search of elucidating the structure of the set of representations of integers in a rational base number system, we have shown that the correspondence between two consecutive minimal words is achieved by a transducer that exhibits essentially the same structure as the one of the set of representations we started with. We have called this property an "auto-similarity" of the structure, as the structure is indeed not self-similar.

Let us note that the infinite transducer we have built realises the correspondence for all minimal words. It does not contradict the following conjecture that would express that each minimal word contains the complexity of the whole tree.
Conjecture 1. For every integer n, there exists a finite transducer that transforms w_{n}^{-}into w_{n+1}^{-}.

It is also remarkable that in this construction, the case $p=2 q-1$ appears as the frontier between two completely different behaviours of the systems, in a much stronger way than it was described in our first work [1] on rational base number systems. It was hinted that there might be structural differences between two classes of rational base number systems. Indeed, those where $p \geqslant 2 q-1$ have an additional property, namely that, for every integer n, the span of n is never equal to 0 . It was however never proved that this property was false when $p<2 q-1$.

References

1. Shigeki Akiyama, Christiane Frougny, and Jacques Sakarovitch. Powers of rationals modulo 1 and rational base number systems. Israel J. Math., 168:53-91, 2008.
2. Shigeki Akiyama, Victor Marsault, and Jacques Sakarovitch. Auto-similarity in rational base number systems (full version). http://arxiv.org/abs/1305.6757.
3. Jean Berstel. Transductions and Context-Free Languages. Teubner, 1979.
4. M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press, 2002.
5. K. Mahler. An unsolved problem on the powers of 3/2. J. Austral. Math. Soc., 8:313-321, 1968.
6. Victor Marsault and Jacques Sakarovitch. On sets of numbers rationally represented in a rational base number system. In T. Muntean, D. Poulakis, and R. Rolland, editors, Proceedings of CAI 2013. Springer, 2013. to appear.

[^0]: * Corresponding author, victor.marsault@telecom-paristech.fr

[^1]: ${ }^{3}$ The function $\tau_{\frac{p}{q}}$ is defined on $\mathbb{N} \times \mathbb{Z}$ instead of $\mathbb{N} \times A_{p}$ in anticipation of future developments.
 ${ }^{4}$ In [1], $\mathcal{T}_{\frac{p}{q}}$ is denoted an infinite directed tree. The labels of the (finite) paths starting from the root precisely formed the language $0^{*} L_{\frac{p}{q}}$, as is $L\left(\mathcal{T}_{\frac{p}{q}}\right)$ in our case.

