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Abstract. This work is a contribution to the study of set of the repre-
sentations of integers in a rational base number system. This prefix-closed
subset of the free monoid is naturally represented as a highly non regu-
lar tree whose nodes are the integers and whose subtrees are all distinct.
With every node of that tree is then associated a minimal infinite word
(and a maximal infinite word).
The main result is that a sequential transducer which computes for all n
the minimal word associated with n+ 1 from the one associated with n,
has essentially the same underlying graph as the tree itself.
These infinite words are then interpreted as representations of real num-
bers; the difference between the numbers represented by the maximal
and minimal word associated with n is called the span of n. The preced-
ing construction allows to characterise the topological closure of the set
of spans.

1 Introduction

The purpose of this work is a further exploration and a better understanding
of the set of words that represent integers in a rational base number systems.
These numeration systems have been introduced and studied in [1], leading to
some progress in the results around the so-called Malher’s problem (cf. [5]).
We give below a precise definition of rational base number systems and of the
representation of numbers in such a system. But one can hint at the results
established in this paper by just looking at the figure showing the ‘representation
tree’ of the integers – that is, the compact way of describing the words that
represent the integers – in a rational base number system (Figure 1b for the
base 3

2 ) and by comparison with the representation tree (or trie) in an analogous
integer base number system (Figure 1a for the base 3).

In the latter, all subtrees are the same and equal to the full ternary tree,
whereas in the former, all subtrees are different. As a result, the language of the
representations of the integers is not a regular language. It may even be shown
that the language satisfies no iteration lemma of any kind ([6]). With the hope
of finding some order or regularity within what seems to be closer to complete
randomness (which, on the other hand, is not established either) we consider the
minimal words originating from every node of the tree.
� Corresponding author, victor.marsault@telecom-paristech.fr



In the case of an integer base, this is meaningless: all these minimal words
are equal to 0ω. In the case of a rational base these words are on the contrary all
distinct and none are even ultimately periodic (as no ultimately periodic word
can be found in this tree). In order to find some invariant of all these distinct
words, or at least a relationship between them, we have studied the function that
maps the minimal word w−

n associated with n onto the one associated with n+1,
and tried to describe this function by a (possibly infinite) transducer.

0 0

0

1

1

2

2

0

0

11

2

2

3

0

41

5

2

6

0

71

8

2

0

0

11

2

2

3

0

41

5

2

6

0

71

8

2

9

0

101

11

2

12

0

131

14

2

15

0

161

17

2

18

0

191

20

2

21

0

221

23

2

24

0

251

26

2

0

0

1

1

2

2

3

0

4

1

5

2

6

0

7

1

8

2

9

0

10

1

11

2

12

0

13

1

14

2

15

0

16

1

17

2

18

0

19

1

20

2

21

0

22

1

23

2

24

0

25

1

26

2

27

0

28

1

29

2

30

0

31

1

32

2

33

0

34

1

35

2

36

0

37

1

38

2

39

0

40

1

41

2

42

0

43

1

44

2

45

0

46

1

47

2

48

0

49

1

50

2

51

0

52

1

53

2

54

0

55

1

56

2

57

0

58

1

59

2

60

0

61

1

62

2

63

0

64

1

65

2

66

0

67

1

68

2

69

0

70

1

71

2

72

0

73

1

74

2

75

0

76

1

77

2

78

0

79

1

80

2

(a) Integer base 3
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(b) Rational base 3
2

Fig. 1: Representation trees in two number systems

The computation of such a transducer in the case of the base 3
2 , and more

generally in the case of a base p
q with p = 2q − 1, leads to a surprising and

unexpected result. If T p
q

denotes the representation tree – viewed as an infinite
automaton, – the transducer, denoted by D p

q
, is obtained by replacing the label

of every transition of T p
q

by a set of pairs of letters that depends upon this label
only. In other words, the underlying graphs of T p

q
and D p

q
coincide, and D p

q
is

obtained from T p
q

by a substitution from the alphabet of digits into the alphabet
of pairs of digits, in this special and remarkable case.

The general case is hardly more difficult to describe, once it has been un-
derstood. Let Bp,q be the digit alphabet with 2q − 1 (consecutive) elementsand



whose greatest element is p − 1. If p > 2q − 1, then Bp,q is contained in Ap; it
consists of Ap, enlarged with enough negative digits otherwise.

From T p
q

and with the digit alphabet Bp,q, we first define another ‘automaton’

denoted by T̂ p
q
: either by deleting the transitions of T p

q
whose labels do not belong

to Bp,q in the case where p > 2q − 1 or, in the case where p < 2q − 1 by adding
transitions labelled with the new negative digits. Then, D p

q
is obtained from T̂ p

q

exactly as above, by a substitution from the alphabet of digits into the alphabet
of pairs of digits. This construction of D p

q
, which we call the derived transducer,

and the proof of its correctness are presented in Section 3. In the following
Section 4, we turn to a problem seems to be of different nature.

In [1], the tree T p
q
, which is built from the representations of integers, is used

to define the representations of real numbers: the label of an infinite branch of
the tree is the development ‘after the decimal point’ of a real number and the
drawing of the tree as a fractal object — like in Figure 1b — is fully justified by
this point of view. The same idea leads to the definition of the (renormalised)
span of a node n of the representation tree: it is the difference between the reals
represented respectively by the maximal and the minimal words originating in
the node n (see Remark 1, page 11).

Again, this notion is meaningless in the case of an integer base p: the span
of node n is always 1. And again, the notion is far more richer and complex
in the case of a rational base p

q . The trivial relationship between the minimal
word originating at node n + 1 and the maximal word originating at node n
leads to the connexion between the construction of the derived transducer D p

q

and the description of the set of spans Sp
q
. Not only the digit-wise difference

between maximal and minimal words is written on the alphabet Bp,q, but all
these ‘difference words’ are infinite branches in the tree T̂ p

q
. This is explained

in Section 4. From the structure of T̂ p
q
, it then follows (Theorem 3) that the

topological closure of Sp
q

is an interval in the case where p � 2q − 1, and a set
with empty interior in the case where p > 2q − 1.

In conclusion, we have shown that a straightforward computation of w−
n+1

from w−
n requires the same structure as T p

q
itself – despite the fact that every

minimal word looks as complex as the whole tree – whether it be performed
directly on the words, or indirectly via the span of the nodes. It is this phe-
nomenon that we call auto-similarity of the structure T p

q
. In this process, the

number systems where p = 2q − 1 appear to mark the boundary between two
different behaviours, in a more deeper way than that was described in the first
study of rational base number systems [1].

This paper is meant to be self-contained and gives, in particular, all necessary
definitions concerning rational base number systems. However, the reference [1]
where these systems have been defined and the sets of representations first stud-
ied will probably be useful. In order to meet the space constraints, all proofs and
even some figures have been removed. The reader may find them in a complete
version downloadable from arXiv [2].



2 Preliminaries and Notations

2.1 Numbers and Words

Given two real numbers x and y, we denote by x
y their division in R (even if x or y

happens to be integers), by [x, y] the corresponding interval of R and by �x� the
integer n such that (n− 1) < x � n. On the other hand, given two positive inte-
gers n and m, we denote by n÷m and n%m respectively the quotient and the re-
mainder of the Euclidean division of n by m, that is, n = (n÷m)m+ (n%m)
and 0 � (n%m) < m. Additionally, we denote by �n,m� the integer inter-
val {n, (n+ 1), . . . ,m}.

An alphabet is a finite set of symbols called letters or digits when they are
integers. Given an alphabet A, we consider both the sets of finite and infinite
words over A respectively denoted by A∗ and Aω and we denote the empty word
by ε. For every positive integer p, we denote by Ap the canonical digit alphabet
of the base p number system: Ap = {0, 1, . . . , p− 1}. For clarity, we denote finite
words by u, v and infinite words by w. The concatenation of two words u, v is
either explicitly denoted by a low dot, as in u.v, or implicitly when there is no
ambiguity, as in uv. A finite word u is said to be a prefix of a finite word v (resp.
an infinite word w) if there exists a finite word v′ (resp. an infinite word w′) such
that v = uv′ (resp. w = uw′). The set of subsets of an alphabet A is denoted
by P(A).

2.2 Automata and Transducers

We deal here with a very special class of automata and transducers only: they
are infinite, their state set is N, they are deterministic (or letter-to-letter and
sequential), the initial state is 0, and all states are final.

As usual, an automaton X over A is denoted by a 5-tuple X = 〈N, A, δ, 0,N 〉,
where δ : N×A → N is the transition function. The partial function δ is ex-
tended to N×A∗, and δ(n, u) = m is also denoted by n · u = m or by n u−−→ m.
Given an integer n, every state n ·a for some a in A is called a successor of n. A
word u in A∗ (resp. a word w in Aω) is accepted by X if 0 · u exists (resp. if 0 · v
exists for every finite prefix v of w). The language of finite words (resp. of infinite
words) accepted by X is denoted by L(X ) (resp. by L (X ) ).

For transducers, we essentially use the notation of [3], adapted for the infinite
case. A transducer is an automaton whose transitions are labelled by (set of)
pairs of letters. Formally, it is represented by a tuple Y = 〈N, A×B, δ, η, 0,N 〉
where 〈N, A, δ, 0,N 〉 is an automaton, called the underlying input automaton
of Y, A is called the input alphabet, B is the output alphabet and η : N×A → B is
the output function. The transition function δ is extended as in automata, and η
is extended to N× A∗ → B∗ by η(n, ε) = ε and η(n, ua) = η(n, u).η(n · u, a),
and η(n, u) is also denoted by n ∗ u for short.

Moreover, given two finite words u and v, we denote by n u | v−−−−→ m the
combination of n · u = m and n ∗ u = v . We say that the image of a finite
word u by Y, denoted by Y(u), is the word v, if it exists, such that 0 u | v−−−−→ k



for some k. Similarly, the image of the infinite word w is w′ if, for every finite
prefix u of w, Y(u) is a prefix of w′.

2.3 Rational Base Number System

Let p and q be two co-prime integers such that p > q > 1. Given a positive
ieger N , let us write N0 = N and define the sequence (Ni)i∈N by all i > 0,

qNi = pN(i+1) + ai for all i > 0 ,

where ai is the remainder of the Euclidean division of qNi by p, hence in the
alphabet Ap = �0, p− 1�. Since p > q, the sequence (Ni)i∈N is strictly decreasing
and eventually stops at Nk+1 = 0. Moreover, it holds that

N =

k∑
i=0

ai
q

(
p

q

)i

.

The evaluation map π is derived from this formula. Given a word anan−1 · · · a0
over Ap, and indeed over any alphabet of digits, its value is defined by

π(anan−1 · · · a0) =
n∑

i=0

ai
q

(
p

q

)i

. (1)

Conversely, a word u in A∗
p is called a p

q -representation of an integer x

if π(u) = x. Since the representation is unique up to leading 0’s (see [1, Theo-
rem 1]), u is denoted by 〈x〉 p

q
(or 〈x〉 for short) and can be computed with the

modified Euclidean division algorithm above. By convention, the representation
of 0 is the empty word ε. The set of all p

q -representations of integers is denoted
by L p

q
:

L p
q
=

{
〈n〉 p

q

∣∣∣ n ∈ N

}
.

It should be noted that a rational base number system is not a β-numeration
— where the representation of a number is computed by the (greedy) Rényi
algorithm (cf. [4, Chapter 7]) — in the special case where β is a rational number.
In such a system, the digit set is {0, 1, . . . , �p

q �} and the weight of the i-th leftmost
digit is (pq )

i; whereas the rational base number system, they are {0, 1 . . . (p− 1)}
and 1

q (
p
q )

i respectively.
It is immediate that L p

q
is prefix-closed (since, in the modified Euclidean

division algorithm 〈N〉 = 〈N1〉.a0) and right-extendable (for every representa-
tion 〈n〉, there exists (at least) an a in Ap such that q divides (np + a) and
then 〈np+a

q 〉 = 〈n〉.a). As a consequence, L p
q

can be represented as an infinite
tree, or ‘trie’ (cf. Figure 2).

It is known that L p
q

is not rational (not even context-free), and the following
automaton (accepting indeed the language 0∗L p

q
) is infinite.
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Fig. 2: The tree representation of the language L 3
2

Definition 1. Let τ p
q
: N×Z → N be the (partial) function defined3 by:

∀n ∈ N , ∀a ∈ Z τ p
q
(n, a) =

(
np+ a

q

)
if (np+ a) is divisible by q. (2)

We denote4 by T p
q

the automaton T p
q
=

〈
N, Ap, τ p

q
, 0,N

〉
.

In T p
q
, we then have the transitions n a−−→

(
np+a

q

)
for every n in N, and

every a in Ap such that (np+ a) is divisible by q. The tree representation of L p
q
,

as in Figure 2 augmented by an additional loop labelled by 0 on the state 0
becomes a representation of T 3

2
.

We call minimal alphabet the subalphabet Aq = �0, q − 1� of Ap and respec-
tively maximal alphabet the subalphabet �(p − q), (p − 1)�. Any letter of Aq is
then called a minimal letter, maximal letter being defined analogously. The def-
inition of τ p

q
implies that every state of T p

q
has a successor by a unique minimal

(resp. maximal) letter.

3 The function τ p
q

is defined on N × Z instead of N × Ap in anticipation of future
developments.

4 In [1], T p
q

is denoted an infinite directed tree. The labels of the (finite) paths starting

from the root precisely formed the language 0∗L p
q
, as is L

(
T p

q

)
in our case.



Definition 2 (minimal word). A minimal word (in the p
q -system) is an infi-

nite word in Aω
q labelling an (infinite) path of T p

q
(not necessarily starting from

the initial state 0).

It is immediate that, for every n in N, there exists a unique infinite word in Aω
q

starting from the state n in T p
q
. We call this word the minimal word associated

with n and denote it by w−
n . Additionally, we will use the term minimal outgoing

label of n, to designate the first letter of w−
n and minimal successor of n the

unique successor of n by a minimal letter.
We define in a similar way the maximal word w+

n associated with n.

3 The Derived Transducer

The goal of this section is to build a sequential letter-to-letter transducer Aq ×Aq

realising the function w−
n 	→ w−

(n+1). We call this transducer the derived trans-
ducer and denote it by D p

q
. It will be obtained from T p

q
by a local transformation

and this is the subject of Section 3.1.

3.1 From Tp
q

to Dp
q

The transformation of T p
q

into D p
q

is a two-step process. First, the structure

of T p
q

is locally modified, by changing the alphabet, and a new automaton T̂ p
q

is obtained. The second step consists in replacing the labels in T̂ p
q

by a subset

of Aq × Aq by means of a substitution (meaning that two transitions of T̂ p
q

labelled by the same letter will be replaced by the same set of pair of letters)
and produces D p

q
.

Changing the Alphabet We write Bp,q = �p− (2q − 1), (p− 1)�, that is Bp,q

is the alphabet whose maximal element is p−1 and containing 2q−1 consecutive
digits. In particular, if p = (2q − 1), Bp,q = Ap; if p < (2q − 1), Bp,q contains
negative digits; and if p > (2q − 1), Bp,q is an uppermost subset of Ap. Note
that Bp,q is always of cardinal (2q − 1), an odd number, that the digit (p− q) is
then the centre of Bp,q and that its maximal element p − 1 coincides with the
one of Ap.

The automaton T̂ p
q

is then defined by:

T̂ p
q
=

〈
N, Bp,q, τ p

q
, 0,N

〉
.

This is possible, even if Bp,q is larger than Ap because, in Equation 2, τ p
q

is
defined on N×Z, hence on N×Bp,q.

Figure 3 shows an example of the case when p is strictly smaller than 2q − 1,
that is, transitions are added (thick arrows in the figure). The resulting automa-
ton is a DAG (more complex than a tree with one loop).
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Figure 4a shows an example of the case when p is strictly greater than 2q − 1,
that is, transitions are removed (dotted arrows in the figure). In this case, the
resulting automaton is a forest (that is, an infinite union of trees). The accessible
part is the tree rooted in 0. The other trees of the forest are not accessible; they
are kept in T̂ p

q
, as they will come into play at Section 4. Furthermore, as already

noted, if p = (2q − 1), Bp,q = Ap and T p
q
=T̂ p

q
.
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3
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This construction ensures that every state of T̂ p
q

congruent to −1 modulo q

has a unique successor and that every other state has exactly two successors.



Changing the Labels Every label of T̂ p
q

(which is a letter of Bp,q) is re-
placed by a set of pairs of digits in Aq × Aq. The label replacement func-
tion ω p

q
: Bp,q → P(Aq ×Aq) (or ω for short), is more easily defined in two steps.

First, the function ω computes the distance of the input to the centre of Bp,q:
ω(a) = a− (p− q) , for every a in Bp,q. Then, the image of a by ω is the set of
pairs of letters in Aq whose difference is ω(a):

∀a ∈ Bp,q ω(a) = {(b |c) ∈ Aq ×Aq | c− b = ω(a)} . (3)

Example 1 (Case 3
2). The functions ω 3

2
and ω 3

2
are as follows:

ω 3
2
: 0 	−→ −1 ω 3

2
: 0 	−→ { 1 |0 }

ω 3
2
: 1 	−→ 0 ω 3

2
: 1 	−→ { 0 |0, 1 |1 }

ω 3
2
: 2 	−→ 1 ω 3

2
: 2 	−→ { 0 |1 }

and Fig.5 shows D 3
2

(D 7
3

has been placed at Figure 4b in anticipation).
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Fig. 5: The derived transducer D 3
2

Formally, the transducer D p
q
= 〈N, Aq ×Aq, δ, η, 0,N 〉 is defined implicitly

or, more precisely, the transition function δ and the output function η are implicit
functions defined by the following statement:

∀n ∈ N , ∀a ∈ Bp,q , ∀(b, c) ∈ ω(a)

τ p
q
(n, a) defined =⇒ n b | c−−−→ τ p

q
(n, a) is a transition of D p

q
,

that is, δ(n, b) = τ p
q
(n, a) and η(n, b) = c. (4)



In other words, the transitions of D p
q

are labelled as follows: if n ≡ −1 [q], the
state n has exactly one outgoing transition with labels 0 |0, 1 |1, . . . , q − 1 |q − 1.
Otherwise, the state n has two outgoing transitions. If we write k = a− (p− q)
where a is the maximal outgoing label of n in T p

q
: the label of the upper transition

is 0 |k, 1 |k + 1, . . . , (q − 1− k) |q − 1 ; while the label of the lower transition
is q − k |0, (q − k + 1) |1, . . . , q − 1 |k − 1 .

The transducer constructed in this manner is sequential and input-complete,
as stated by the following lemma.

Lemma 1. For every state n of D p
q

and every letter b of Aq, there exists a
unique state m and a unique letter c such that n b | c−−−→ m.

Corollary 1. For every infinite word w in Aω
q , D p

q
(w) exists and is unique.

3.2 Correctness of Dp
q

It remains to establish that D p
q

has the expected behaviour, as stated below.

Theorem 1. For every n in N, D p
q
(w−

n ) = w−
(n+1) .

The proof of Theorem 1 relies on the equivalent (and more explicit) definition
of the transitions of D p

q
, stated in the following proposition.

Proposition 1. If n b | c−−−→ m is a transition of D p
q
, then

c = (b− (n+ 1)p)%q and m =

⌈
(n+ 1)p− b

q
− 1

⌉
.

In the case of finite words, a stronger version can be stated.

Theorem 2. Given a base p
q and two words u, v in A∗

q , the image of u by D p
q

is v if and only if there exists an integer n such that u is a prefix of w−
n and v

is a prefix of w−
n+1.

Theorem 2 is purposely stated on finite words and a similar statement for
infinite words would be false: for every infinite word w of Aω

q , D p
q
(w) exists,

hence there are uncountably many pairs of infinite words w |D p
q
(w) accepted

by D p
q

while there are only countably many pairs w−
n |w−

n+1.

4 Span of a Node

Lets us consider now the real value of infinite words. We denote by ρ : Aω
p → R,

the real evaluation function, defined as follows:

ρ(a1a2 · · ·an · · · ) =
∑
i�0

ai
q

(
p

q

)−i

. (5)



We denote by W p
q

the language of infinite words L(T p
q
). It is proven in [1, The-

orem 2] that ρ(W p
q
) is the interval [0, ρ

(
w+

0

)
]. By extension, we denote by W p

q ,n

(or, for short, Wn) the language of infinite words 〈n〉−1W p
q
. Intuitively, an infi-

nite word w over Ap is in Wn if n · u exists in T p
q

for every finite prefix u of w.
Analogously to W p

q
, the following holds.

Lemma 2. For every integer n, ρ(W p
q ,n

) is the interval [ρ(w−
n ) , ρ(w+

n )].

Definition 3. For every integer n, the span of n, denoted by span(n), is the
size of ρ(Wn): span(n) = (ρ(w+

n )− ρ(w−
n )).

Remark 1. Let us stress that what we call the span of the node n is not, in the
fractal drawing (Figure 1b), the width of the subtree rooted in n. This quantity
is obviously decreasing exponentially with the depth of the node n and the set
of these has 0 as unique accumulation point. What we call span is this quantity
renormalised by multiplication by (pq )

k, where k is the depth of the node n.

Let a be a letter from the minimal alphabet Aq = �0, (q − 1)� and b a letter
from the maximal alphabet �(p− q), (p− 1)�. The integer (b − a) is necessarily
in �p−(2q−1), p−1� = Bp,q. Hence, through this digit-wise subtraction, denoted
by ‘�’, (w+

n � w−
n ) is a word over Bp,q, and is called the span-word of n. It is

routine to check that the following statement is true.

Lemma 3. For all integer n, span(n) = ρ(w+
n � w−

n ).

Let Sp
q

be the set of real numbers Sp
q
= {span(n) | n ∈ N}; the following

statement holds.

Theorem 3.

(i) If p � 2q − 1, Sp
q

is dense in [0, ρ
(
w+

0

)
].

(ii) If p > 2q − 1, Sp
q

is nowhere dense.

The key to Theorem 3 is the connexion between the span-words and T̂ p
q
,

achieved by Theorem 4 and Proposition 3.

Theorem 4. All span-words are accepted by T̂ p
q
.

The proof of this theorem is a direct consequence of Proposition 2, below
and requires more definitions. There exists a (trivial) map m from the minimal
alphabet to the maximal alphabet, such that, for all integer n, m(w−

n+1) = w+
n .

m : Aq −→ �(p− q), (p− 1)�

a 	−→ m(a) = maxLetter(a+ p)

where maxLetter(x) is the greatest integer congruent to x modulo q and strictly
smaller than p. By extending m to Aω

q , Theorem 4 reduces to the statement
that T̂ p

q
accepts (m(w−

n+1) � w−
n ) for every n:



Proposition 2. If w |w′ is a pair of infinite words accepted by D p
q

then T̂ p
q

accepts the word (m(w′) � w).

Analogously to the case of D p
q
, T̂ p

q
accepts uncountably many infinite words,

therefore words that are not (w+
n � w−

n ) for any n. That being said, it seems to
be the best result we can hope for, as the following two statements hold.
Proposition 3. Every finite word accepted by T̂ p

q
is the prefix of a span-word.

Corollary 2. The language of infinite words of T̂ p
q

is the topological closure of
the span-words.

5 Conclusion

In the search of elucidating the structure of the set of representations of integers
in a rational base number system, we have shown that the correspondence be-
tween two consecutive minimal words is achieved by a transducer that exhibits
essentially the same structure as the one of the set of representations we started
with. We have called this property an “auto-similarity” of the structure, as the
structure is indeed not self-similar.

Let us note that the infinite transducer we have built realises the correspon-
dence for all minimal words. It does not contradict the following conjecture that
would express that each minimal word contains the complexity of the whole tree.

Conjecture 1. For every integer n, there exists a finite transducer that trans-
forms w−

n into w−
n+1.

It is also remarkable that in this construction, the case p = 2q − 1 appears
as the frontier between two completely different behaviours of the systems, in a
much stronger way than it was described in our first work [1] on rational base
number systems. It was hinted that there might be structural differences between
two classes of rational base number systems. Indeed, those where p � 2q − 1
have an additional property, namely that, for every integer n, the span of n
is never equal to 0. It was however never proved that this property was false
when p < 2q − 1.
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